首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
The new particle formation due to the use of cleaning products containing volatile organic compounds (VOCs) in indoor environments is well documented in the scientific literature. Indeed, the physical-chemical process occurring in particle nucleation due to VOC-ozone reactions was deepened as well as the effect of the main influencing parameters (ie, temperature, ozone). Nonetheless, proper quantification of the emission under actual meteo-climatic conditions and ozone concentrations is not available. To this end, in the present paper the emission factors of newly generated ultrafine particles due to the use of different floor cleaning products under actual temperature and relative humidity conditions and ozone concentrations typical of the summer periods were evaluated. Tests in a chamber and in an actual indoor environment were performed measuring continuously particle number concentrations and size distributions during cleaning activities. The tests revealed that a significant particle emission in the nucleation mode was present for half of the products under investigation with emission factors up to 1.1 × 1011 part./m2 (8.8 × 1010 part./mLproduct), then leading to an overall particle emission comparable to other well-known indoor sources when cleaning wide surfaces.  相似文献   

2.
PM10‐bound polycyclic aromatic hydrocarbons (PAHs) levels were monitored at urban locations (outdoor/indoor) within the city of Madrid between May 2017 and April 2018. Fourteen PAH congeners were measured, potential emission sources were identified as were potential carcinogenic risks. The ΣPAHs averaged 0.577 and 0.186 ng/m3 in outdoor and indoor air, with a high linear correlation per individual mean PAH and month. The largest contributors to the ΣPAHs were the high‐molecular‐weight PAHs. Principal component analysis‐multiple linear regression results showed that emissions from diesel and vehicular processes explained 27% and 23% of the total variance of outdoor and indoor air, while combustion processes accounted for 30% and 25% in ambient and indoor air, respectively. During the cold season, biomass burning plus coal and wood combustion were additional sources of outdoor emissions. The heavy‐, medium‐ and light‐molecular‐weight PAH originating from outdoor sources accounted for 72%, 80%, and ~60% of the indoor levels of the three respective PAH groups. Average BaP concentration was 0.029 and 0.016 ng/m3 in outdoor and indoor air, respectively. Estimated BaPeq concentration averaged 0.072, 0.035, and 0.027 ng/m3 for outdoor, indoor, and indoor‐generated individual PAH concentrations, respectively. The estimated carcinogenic risk falls within the range of acceptable risk targeted by the US‐EPA.  相似文献   

3.
This study is among the first to apply laser‐induced fluorescence to characterize bioaerosols at high time and size resolution in an occupied, common‐use indoor environment. Using an ultraviolet aerodynamic particle sizer, we characterized total and fluorescent biological aerosol particle (FBAP) levels (1–15 μm diameter) in a classroom, sampling with 5‐min resolution continuously during eighteen occupied and eight unoccupied days distributed throughout a one‐year period. A material‐balance model was applied to quantify per‐person FBAP emission rates as a function of particle size. Day‐to‐day and seasonal changes in FBAP number concentration (NF) values in the classroom were small compared to the variability within a day that was attributable to variable levels of occupancy, occupant activities, and the operational state of the ventilation system. Occupancy conditions characteristic of lecture classes were associated with mean NF source strengths of 2 × 106 particles/h/person, and 9 × 104 particles per metabolic g CO2. During transitions between lectures, occupant activity was more vigorous, and estimated mean, per‐person NF emissions were 0.8 × 106 particles per transition. The observed classroom peak in FBAP size at 3–4 μm is similar to the peak in fluorescent and biological aerosols reported from several studies outdoors.  相似文献   

4.
Humans are a prominent source of airborne biological particles in occupied indoor spaces, but few studies have quantified human bioaerosol emissions. The chamber investigation reported here employs a fluorescence‐based technique to evaluate bioaerosols with high temporal and particle size resolution. In a 75‐m3 chamber, occupant emission rates of coarse (2.5–10 μm) fluorescent biological aerosol particles (FBAPs) under seated, simulated office‐work conditions averaged 0.9 ± 0.3 million particles per person‐h. Walking was associated with a 5–6× increase in the emission rate. During both walking and sitting, 60–70% or more of emissions originated from the floor. The increase in emissions during walking (vs. while sitting) was mainly attributable to release of particles from the floor; the associated increased vigor of upper body movements also contributed. Clothing, or its frictional interaction with human skin, was demonstrated to be a source of coarse particles, and especially of the highly fluorescent fraction. Emission rates of FBAPs previously reported for lecture classes were well bounded by the experimental results obtained in this chamber study. In both settings, the size distribution of occupant FBAP emissions had a dominant mode in the 3–5 μm diameter range.  相似文献   

5.
J. Kim  K. Lee 《Indoor air》2013,23(4):318-324
The purposes of this study were to determine indoor ultrafine particle (UFP, diameter <100 nm) levels in ice rinks and to characterize UFP decay and emission rates. All 15 public ice rinks in Seoul were investigated for UFP and carbon monoxide (CO) concentrations. Three ice rinks did not show peaks in UFP concentrations, and one ice rink used two resurfacers simultaneously. High peaks of UFP and CO concentrations were observed when the resurfacer was operated. The average air change rate in the 11 ice rinks was 0.21 ± 0.13/h. The average decay rates of UFP number concentrations measured by the P‐Trak and DiSCmini were 0.54 ± 0.21/h and 0.85 ± 0.34/h, respectively. The average decay rate of UFP surface area concentration was 0.33 ± 0.15/h. The average emission rates of UFP number concentrations measured by P‐Trak and DiSCmini were 1.2 × 1014 ± 6.5 × 1013 particles/min and 3.3 × 1014 ± 2.4 × 1014 particles/min, respectively. The average emission rate of UFP surface area concentration was 3.1 × 1011 ± 2.0 × 1011 μm2/min. UFP emission rate was associated with resurfacer age. DiSCmini measured higher decay and emission rates than P‐Trak due to their different measuring mechanisms and size ranges.  相似文献   

6.
We report results of analysis of a month‐long measurement of indoor air and environment quality parameters in one gym during sporting activities such as football, basketball, volleyball, badminton, boxing, and fitness. We have determined an average single person's contribution to the increase of temperature, humidity, and dust concentration in the gym air volume of 12500 m3: during 90‐min exercise performed at an average heart rate of 143 ± 10 bpm, a single person evaporated 0.94 kg of water into the air by sweating, contributed 0.03 K to the air temperature rise and added 1.5 μg/m3 and 5 ng/m3 to the indoor concentration of inhalable particles (PM10) and Ca concentration, respectively. As the breathing at the observed exercise intensity was about three times faster with respect to the resting condition and as the exercise‐induced PM10 concentration was about two times larger than outdoors, a sportsman in the gym would receive about a sixfold higher dose of PM10 inside than he/she would have received at rest outside.  相似文献   

7.
Cooking is recognized as an important source of particulate pollution in indoor and outdoor environments. We conducted more than 100 individual experiments to characterize the particulate and non‐methane organic gas emissions from various cooking processes, their reaction rates, and their secondary organic aerosol yields. We used this emission data to develop a box model, for simulating the cooking emission concentrations in a typical European home and the indoor gas‐phase reactions leading to secondary organic aerosol production. Our results suggest that about half of the indoor primary organic aerosol emission rates can be explained by cooking. Emission rates of larger and unsaturated aldehydes likely are dominated by cooking while the emission rates of terpenes are negligible. We found that cooking dominates the particulate and gas‐phase air pollution in non‐smoking European households exceeding 1000 μg m?3. While frying processes are the main driver of aldehyde emissions, terpenes are mostly emitted due to the use of condiments. The secondary aerosol production is negligible with around 2 μg m?3. Our results further show that ambient cooking organic aerosol concentrations can only be explained by super‐polluters like restaurants. The model offers a comprehensive framework for identifying the main parameters controlling indoor gas‐ and particle‐phase concentrations.  相似文献   

8.
The formaldehyde emission rates from building and furniture materials in 24 student rooms were measured using a passive sampling method parallel to a monitoring of indoor and outdoor concentrations. This passive tool represents an interesting alternative to standard dynamic methods as it is easier to implement for field investigation. Although the indoor formaldehyde concentrations (21.3 μg m−3 on average) are at a medium level, consistent with earlier published results, the recorded emission rates are globally low (from 1 to 15 μg m−2 h−1) except for the high emission of beds identified in one building (87.3 μg m−2 h−1 on average). Data analysis revealed that the emissions released from furniture and building materials are the main contributions to the indoor formaldehyde concentrations with 45 and 43% on average. The high formaldehyde levels in rooms are mainly explained by the rise of formaldehyde emissions from indoor materials with temperature although the buildings and the furniture were older than 7 years. Basing on the data of emission rates, outdoor concentrations and air exchange rates, a one compartment mass balance model was used to calculate indoor concentrations. A good agreement was found between the predictions of the model and the measured indoor concentrations. This methodology could lead to the definition of arrangements for the efficient reduction of indoor formaldehyde levels.  相似文献   

9.
Volatile organic compounds (VOCs) emitted from personal care products (PCPs) can affect indoor air quality and outdoor air quality when ventilated. In this paper, we determine a set of simplified VOC species profiles and emission rates for a range of non-aerosol PCPs. These have been constructed from individual vapor analysis from 36 products available in the UK, using equilibrium headspace analysis with selected-ion flow-tube mass spectrometry (SIFT-MS). A simplified speciation profile is created based on the observations, comprising four alcohols, two cyclic volatile siloxanes, and monoterpenes (grouped as limonene). Estimates are made for individual unit-of-activity VOC emissions for dose-usage of shampoos, shower gel, conditioner, liquid foundation, and moisturizer. We use these values as inputs to the INdoor air Detailed Chemical Model (INDCM) and compare results against real-world case-study experimental data. Activity-based emissions are then scaled based on plausible usage patterns to estimate the potential scale of annual per-person emissions for each product type (eg, 2 g limonene person−1 yr−1 from shower gels). Annual emissions from non-aerosol PCPs for the UK are then calculated (decamethylcyclopentasiloxane 0.25 ktonne yr−1 and limonene 0.15 ktonne yr−1) and these compared with the UK National Atmospheric Emissions Inventory estimates for non-aerosol cosmetics and toiletries.  相似文献   

10.
Although many studies have reported the health effects of biomass fuels in developing countries, relatively few have quantitatively characterized emissions from biomass stoves during cooking and heating. The aim of this pilot study was to characterize the emission characteristics of different biomass stoves in four rural houses in Bhutan during heating (metal chimney stove), rice cooking (traditional mud stove), fodder preparation (stone tripod stove), and liquor distillation (traditional mud stove). Three stage measurements (before, during, and after the activity had ceased) were conducted for PM2.5, particle number (PN), CO, and CO2. When stoves were operated, the pollutant concentrations were significantly elevated above background levels, by an average of 40 and 18 times for PM2.5 and CO, respectively. Emission rates (mg/min) ranged from 1.07 × 102 (PM2.5) and 3.50 × 102 (CO) for the stone tripod stove during fodder preparation to 6.20 × 102 (PM2.5) and 2.22 × 103 (CO) for the traditional mud stove during liquor distillation. Usable PN data were only available for one house, during heating using a metal chimney stove, which presented an emission rate of 3.24 × 1013 particles/min. Interventions to control household air pollution in Bhutan, in order to reduce the health risks associated with cooking and heating, are recommended.  相似文献   

11.
More representative data on source-specific particle number emission rates and associated exposure in European households are needed. In this study, indoor and outdoor particle number size distributions (10–800 nm) were measured in 40 German households under real-use conditions in over 500 days. Particle number emission rates were derived for around 800 reported indoor source events. The highest emission rate was caused by burning candles (5.3 × 1013 h−1). Data were analyzed by the single-parameter approach (SPA) and the indoor aerosol dynamics model approach (IAM). Due to the consideration of particle deposition, coagulation, and time-dependent ventilation rates, the emission rates of the IAM approach were about twice as high as those of the SPA. Correction factors are proposed to convert the emission rates obtained from the SPA approach into more realistic values. Overall, indoor sources contributed ~ 56% of the daily-integrated particle number exposure in households under study. Burning candles and opening the window leads to seasonal differences in the contributions of indoor sources to residential exposure (70% and 40% in the cold and warm season, respectively). Application of the IAM approach allowed to attribute the contributions of outdoor particles to the penetration through building shell and entry through open windows (26% and 15%, respectively).  相似文献   

12.
A mechanistic model that considers particle dynamics and their effects on surface emissions and sorptions was developed to predict the fate and transport of phthalates in indoor environments. A controlled case study was conducted in a test house to evaluate the model. The model‐predicted evolving concentrations of benzyl butyl phthalate in indoor air and settled dust and on interior surfaces are in good agreement with measurements. Sensitivity analysis was performed to quantify the effects of parameter uncertainties on model predictions. The model was then applied to a typical residential environment to investigate the fate of di‐2‐ethylhexyl phthalate (DEHP) and the factors that affect its transport. The predicted steady‐state DEHP concentrations were 0.14 μg/m3 in indoor air and ranged from 80 to 46 000 μg/g in settled dust on various surfaces, which are generally consistent with the measurements of previous studies in homes in different countries. An increase in the mass concentration of indoor particles may significantly enhance DEHP emission and its concentrations in air and on surfaces, whereas increasing ventilation has only a limited effect in reducing DEHP in indoor air. The influence of cleaning activities on reducing DEHP concentration in indoor air and on interior surfaces was quantified, and the results showed that DEHP exposure can be reduced by frequent and effective cleaning activities and the removal of existing sources, though it may take a relatively long period of time for the levels to drop significantly. Finally, the model was adjusted to identify the relative contributions of gaseous sorption and particulate‐bound deposition to the overall uptake of semi‐volatile organic compounds (SVOCs) by indoor surfaces as functions of time and the octanol‐air partition coefficient (Koa) of the chemical. Overall, the model clarifies the mechanisms that govern the emission of phthalates and the subsequent interactions among air, suspended particles, settled dust, and interior surfaces. This model can be easily extended to incorporate additional indoor source materials/products, sorption surfaces, particle sources, and room spaces. It can also be modified to predict the fate and transport of other SVOCs, such as phthalate‐alternative plasticizers, flame retardants, and biocides, and serves to improve our understanding of human exposure to SVOCs in indoor environments.  相似文献   

13.
Particle mass and number concentrations were measured in a mechanically ventilated classroom as part of a study of ventilation strategies for energy conservation. The ventilation system was operated either continuously, intermittently, or shut down during nights while it was on during workdays. It appears that the nighttime ventilation scheme is not important for indoor particle concentrations the following day if fans are operated to give five air exchanges in advance of the workday. The highest concentrations of PM10 were found during and after workdays and were due to human activity in the classroom. The average workday PM10 concentration was 14 μg/m3, well below the WHO guideline values. The number concentration of particles with diameter <0.750 μm was typically between 0.5 × 103 and 3.5 × 103 particle/cm3. These concentrations were largely independent of the occupants. Transient formation of small particles was observed when ventilation was shut down. Then remaining ozone reacted with terpenes emitted by indoor sources and gave up to 8 × 103 particle/cm3 before formation stopped due to lack of ozone. The intermittent ventilation regime was found least favorable for the indoor air quality in the classroom.  相似文献   

14.
Q. Zhang  J. Avalos  Y. Zhu 《Indoor air》2014,24(2):190-198
This study characterized fine (PM2.5) and ultrafine particle (UFP, diameter < 100 nm) emissions from microwave popcorn and analyzed influential factors. Each pre‐packed popcorn bag was cooked in a microwave oven enclosed in a stainless steel chamber for 3 min. The number concentration and size distribution of UFPs and PM2.5 mass concentration were measured inside the chamber repeatedly for five different flavors under four increasing power settings using either the foil‐lined original package or a brown paper bag. UFPs and PM2.5 generated by microwaving popcorn were 150–560 and 350–800 times higher than the emissions from microwaving water, respectively. About 90% of the total particles emitted were in the ultrafine size range. The emitted PM concentrations varied significantly with flavor. Replacing the foil‐lined original package with a brown paper bag significantly reduced the peak concentration by 24–87% for total particle number and 36–70% for PM2.5. A positive relationship was observed between both UFP number and PM2.5 mass and power setting. The emission rates of microwave popcorn ranged from 1.9 × 1010 to 8.0 × 1010 No./min for total particle number and from 134 to 249 μg/min for PM2.5.  相似文献   

15.
PM2.5 exposure is associated with significant health risk. Exposures in homes derive from both outdoor and indoor sources, with emissions occurring primarily in discrete events. Data on emission event magnitudes and schedules are needed to support simulation‐based studies of exposures and mitigations. This study applied an identification and characterization algorithm to quantify time‐resolved PM2.5 emission events from data collected during 224 days of monitoring in 18 California apartments with low‐income residents. We identified and characterized 836 distinct events with median and mean values of 12 and 30 mg emitted mass, 16 and 23 minutes emission duration, 37 and 103 mg/h emission rates, and pseudo‐first–order decay rates of 1.3 and 2.0/h. Mean event‐averaged concentrations calculated using the determined event characteristics agreed to within 6% of measured values for 14 of the apartments. There were variations in event schedules and emitted mass across homes, with few events overnight and most emissions occurring during late afternoons and evenings. Event characteristics were similar during weekdays and weekends. Emitted mass was positively correlated with number of residents (Spearman coefficient, ρ=.10), bedrooms (ρ=.08), house volume (ρ=.29), and indoor‐outdoor CO2 difference (ρ=.27). The event schedules can be used in probabilistic modeling of PM2.5 in low‐income apartments.  相似文献   

16.
Burning candles release a variety of pollutants to indoor air, some of which are of concern for human health. We studied emissions of particles and gases from the stressed burning of five types of pillar candles with different wax and wick compositions. The stressed burning was introduced by controlled fluctuating air velocities in a 21.6 m3 laboratory chamber. The aerosol physicochemical properties were measured both in well-mixed chamber air and directly above the candle flame with online and offline techniques. All candles showed different emission profiles over time with high repeatability among replicates. The particle mass emissions from stressed burning for all candle types were dominated by soot (black carbon; BC). The wax and wick composition strongly influenced emissions of BC, PM2.5, and particle-phase polycyclic aromatic hydrocarbons (PAHs), and to lower degree ultrafine particles, inorganic and organic carbon fraction of PM, but did not influence NOx, formaldehyde, and gas-phase PAHs. Measurements directly above the flame showed empirical evidence of short-lived strong emission peaks of soot particles. The results show the importance of including the entire burn time of candles in exposure assessments, as their emissions can vary strongly over time. Preventing stressed burning of candles can reduce exposure to pollutants in indoor air.  相似文献   

17.
The envelope of low‐energy buildings is generally constructed with significant amounts of plastics, sealants and insulation materials that are known to contain various chemical additives to improve specific functionalities. A commonly used group of additives are flame retardants to prevent the spread of fire. In this study, decabromodiphenyl ether (BDE‐209) and fourteen emerging brominated flame retardants (BFRs) were analyzed in indoor dust, air and on the window surface of newly built low‐energy preschools to study their occurrence and distribution. BDE‐209 and decabromodiphenyl ethane (DBDPE) were frequently detected in the indoor dust (BDE‐209: <4.1‐1200 ng/g, DBDPE: <2.2‐420 ng/g) and on window surfaces (BDE‐209: <1000‐20 000 pg/m2, DBDPE: <34‐5900 pg/m2) while the other thirteen BFRs were found in low levels (dust: <0.0020‐5.2 ng/g, window surface: 0.0078‐35 pg/m2). In addition, the detection frequencies of BFRs in the indoor air were low in all preschools. Interestingly, the dust levels of BDE‐209 and DBDPE were found to be lower in the environmentally certified low‐energy preschools, which could be attributed to stricter requirements on the chemical content in building materials and products. However, an increase of some BFR levels in dust was observed which could imply continuous emissions or introduction of new sources.  相似文献   

18.
Particulate matter is linked to adverse health effects, however, little is known about health effects of particles emitted from typical indoor sources. We examined acute health effects of short-term exposure to emissions from cooking and candles among asthmatics. In a randomized controlled double-blinded crossover study, 36 young non-smoking asthmatics attended three exposure sessions lasting 5 h: (a) air mixed with emissions from cooking (fine particle mass concentration): (PM2.5: 96.1 μg/m3), (b) air mixed with emissions from candles (PM2.5: 89.8 μg/m3), and c) clean filtered air (PM2.5: 5.8 μg/m3). Health effects (spirometry, fractional exhaled Nitric Oxide [FeNO], nasal volume and self-reported symptoms) were evaluated before exposure start, then 5 and 24 h after. During exposures volatile organic compounds (VOCs), particle size distributions, number concentrations and optical properties were measured. Generally, no statistically significant changes were observed in spirometry, FeNO, or nasal volume comparing cooking and candle exposures to clean air. In males, nasal volume and FeNO decreased after exposure to cooking and candles, respectively. Participants reported additional and more pronounced symptoms during exposure to cooking and candles compared to clean air. The results indicate that emissions from cooking and candles exert mild inflammation in asthmatic males and decrease comfort among asthmatic males and females.  相似文献   

19.
E. Darling  R. L. Corsi 《Indoor air》2017,27(3):658-669
Ozone reacts readily with many indoor materials, as well as with compounds in indoor air. These reactions lead to lower indoor than outdoor ozone concentrations when outdoor air is the major contributor to indoor ozone. However, the products of indoor ozone reactions may be irritating or harmful to building occupants. While active technologies exist to reduce indoor ozone concentrations (i.e, in‐duct filtration using activated carbon), they can be cost‐prohibitive for some and/or infeasible for dwellings that do not have heating, ventilating, and air‐conditioning systems. In this study, the potential for passive reduction of indoor ozone by two different clay‐based interior surface coatings was explored. These coatings were exposed to occupied residential indoor environments and tested bimonthly in environmental chambers for quantification of ozone reaction probabilities and reaction product emission rates over a 6‐month period. Results indicate that clay‐based coatings may be effective as passive removal materials, with relatively low by‐product emission rates that decay rapidly within 2 months.  相似文献   

20.
Hotel housekeepers represent a large, low-income, predominantly minority, and high-risk workforce. Little is known about their exposure to chemicals, including volatile organic compounds (VOCs). This study evaluates VOC exposures of housekeepers, sources and factors affecting VOC levels, and provides preliminary estimates of VOC-related health risks. We utilized indoor and personal sampling at two hotels, assessed ventilation, and characterized the VOC composition of cleaning agents. Personal sampling of hotel staff showed a total target VOC concentration of 57 ± 36 µg/m3 (mean ± SD), about twice that of indoor samples. VOCs of greatest health significance included chloroform and formaldehyde. Several workers had exposure to alkanes that could cause non-cancer effects. VOC levels were negatively correlated with estimated air change rates. The composition and concentrations of the tested products and air samples helped identify possible emission sources, which included building sources (for formaldehyde), disinfection by-products in the laundry room, and cleaning products. VOC levels and the derived health risks in this study were at the lower range found in the US buildings. The excess lifetime cancer risk (average of 4.1 × 10−5) still indicates a need to lower exposure by reducing or removing toxic constituents, especially formaldehyde, or by increasing ventilation rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号