首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2020,46(15):24071-24082
Pristine chromium oxide (Cr2O3) and nickel ions (Ni2+) substituted Cr2O3 nanoparticles were synthesized using a simple co-precipitation technique. The main objective of this work is to investigate Ni2+ substituent's role at different concentrations on the structural, morphological, optical, and magnetic properties of Cr2O3 nanoparticles. Structural analyses based on X-ray diffraction (XRD), Raman and Fourier transform infra-red (FTIR) data confirmed the successful incorporation of Ni2+ into Cr2O3 nanoparticles up to x = 0.05 of Ni2+ content, without affecting the rhombohedral crystal structure of Cr2O3 nanoparticles. Rietveld refinement results showed the variation in lattice parameters and cell volumes alongwith the substitution of Ni2+ into Cr2O3 nanoparticles. Raman and FTIR spectra also depicted a considerable shift in the characteristic vibration modes of Cr2O3 nanoparticles due to strain-induced by Ni2+ substitution. Beyond x = 0.05, the structural transformation took place from rhombohedral to cubic crystal structure. Subsequently, new peaks (apart from Cr2O3 phase modes) have been observed at x = 0.1 of Ni2+ content due to the formation of secondary phase i.e., nickel chromate (NiCr2O4). Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) illustrated the changes in the morphology of Cr2O3 nanoparticles with Ni2+ substitution. UV–Vis analysis revealed a narrowing of optical band energy (Eg) of Ni2+ substituted Cr2O3 nanoparticles from 3 to 1.85 eV as Ni2+ content varies from x = 0 to 0.2, respectively. Afterward, there is an increase in optical band gap energy (Eg) when Ni2+ content increased from x = 0.3 to 0.5, as NiCr2O4 started dominating the Cr2O3 phase. Single-phase Ni2+ substituted Cr2O3 nanoparticles exhibited a superparamagnetic behavior, whereas the multi-phase compound ascribed to both superparamagnetic and paramagnetic. These changes in optical and magnetic properties can lead to novel strategies to render applications in the field of optoelectronics and optomagnetic devices.  相似文献   

2.
3.
《Ceramics International》2020,46(15):24194-24203
In this article, we have reported an effective, rapid as well as economical Er3+ substituted Ni0.4Co0.6Fe2O4 ferrite nanoparticles synthesized via surfactant-assisted co-precipitation route. The synthesized nanoparticles were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), dielectric properties, current-voltage (I–V) measurements, and vibrating sample magnetometry (VSM). XRD and FTIR confirmed the face-centered (FCC) spinel structure of all compositions of the synthesized spinel ferrite nanoparticles. The deviations in the lattice constant granted with the variation in size of the guest (Er3+) and host (Fe3+) cations. These ferrites were also subjected for electrical, magnetic and dielectric investigations. I–V measurements showed that resistivity values decreased from 6.20 × 107 Ω cm to 0.03 × 107 Ω cm with the increased Er3+ contents. Saturation magnetization increased from 35.99 to 39.95 emu/g. This high value of saturation magnetization suggested the possible utilization of such ferrites for practical applications such as microwave and recording devices fabrication. Interestingly, the magnetic and dielectric properties of nickel-cobalt ferrite nanoparticles showed ample improvement upon Er3+ substitution. The results clearly indicate the potential of Er+3 substituted spinel ferrite particles in various advanced technological devices fabrication.  相似文献   

4.
《Ceramics International》2016,42(16):18154-18165
Nanoparticles of Co1−xNixFe2O4 with x=0.0, 0.10, 0.20, 0.30, 0.40 and 0.50 were synthesized by co-precipitation method. The structural analysis reveals the formation of single phase cubic spinel structure with a narrow size distribution between 13–17 nm. Transmission electron microscope images are in agreement with size of nanoparticles calculated from XRD. The field emission scanning electron microscope images confirmed the presence of nano-sized grains with porous morphology. The X-ray photoelectron spectroscopy analysis confirmed the presence of Fe2+ ions with Fe3+. Room temperature magnetic measurements showed the strong influence of Ni2+ doping on saturation magnetization and coercivity. The saturation magnetization decreases from 91 emu/gm to 44 emu/gm for x=0.0–0.50 samples. Lower magnetic moment of Ni2+ (2 µB) ions in comparison to that of Co2+ (3 µB) ions is responsible for this reduction. Similarly, overall coercivity decreased from 1010 Oe to 832 Oe for x=0.0–0.50 samples and depends on crystallite size. Cation distribution has been proposed from XRD analysis and magnetization data. Electron spin resonance spectra suggested the dominancy of superexchange interactions in Co1−xNixFe2O4 samples. The optical analysis indicates that Co1−xNixFe2O4 is an indirect band gap material and band gap increases with increasing Ni2+ concentration. Dispersion behavior with increasing frequency is observed for both dielectric constant and loss tangent. The conduction process predominantly takes place through grain boundary volume. Grain boundary resistance increases with Ni2+ ion concentration.  相似文献   

5.
《Ceramics International》2016,42(4):4754-4763
Manganese substituted nickel ferrites, Ni1−xMnxFe2O4 (x=0, 0.3, 0.5 and 0.7) have been obtained by a combined method, heat treatment and subsequent mechanical milling. The samples were characterised by X-ray diffraction, differential scanning calorimetry and magnetic measurements. The increase of the Mn2+ cations amount into the spinel structure leads to a significant expansion of the cubic spinel structure lattice parameter. The crystallite size decreases with increasing milling time up to 120 min, more rapidly for the nickel–manganese ferrites with a large amount of Mn2+ cations (x=0.7). After only 15 min of milling the mean crystallites size is less than 25 nm for all synthesised ferrites. The Néel temperature decreases by increasing Mn2+ cation amount from 585 °C for x=0 up to 380 °C for x=0.7. The magnetisation of the ferrite increases by introducing more manganese cations into the spinel structure. The magnetisation of the milled samples decreases by increasing milling time for each ratio among Ni and Mn cations and tends to be difficult to saturate, a behaviour assigned to the spin canted effect.  相似文献   

6.
《Ceramics International》2019,45(11):13685-13691
High-performance inductive couplers require Ni-Zn ferrites of high saturation magnetization, Curie temperature, permeability and application frequency. However, for inductive couplers some of these properties run against each other in one ferrite. To balance these requirements, in this work, novel Ni-Zn ferrite ceramics co-doped by Ce3+ and Co2+ ions with chemical formula Ni0.4Zn0.5Co0.1CexFe2-xO4 (x = 0–0.06) were designed and fabricated by a molten salt method. For the acquired ferrites, both Ce3+ and Co2+ ions could come into the lattices. The initially doped Co2+ ions would cause a slightly decreased grain size and dramatically reduced the specimen densification, but the further added Ce3+ ions could effectively inhibit the density reduction, while the grain size continues to dwindle. The additional Ce3+ ions would generate a foreign CeO2 phase in the acquired specimens. The sole doping of Co2+ ions would aggrandize the saturation magnetization of ferrites, but the introduction of Ce3+ ions would cause its decrease. However, with an appropriate doping level, the Ce3+ and Co2+ ions co-doped ferrites could preserve a relatively high saturation magnetization, while the Curie temperature and cut-off frequency of the ferrites are dramatically augmented, although the permeability would be somewhat reduced. The as-acquired ferrites were simulated to apply in inductive couplers, revealing that the devices manufactured by the Ni0.4Zn0.5Co0.1CexFe2-xO4 ferrites had significantly high maximum operating frequency, compared with that of the one manufactured by pure Ni0.5Zn0.5Fe2O4 ferrite.  相似文献   

7.
Ferrites may contain single domain particles which gets converted into super-paramagnetic state near critical size. To explore the existence of these characteristic feature of ferrites, we have performed magnetization(M-H loop) and Mössbauer spectroscopic studies of Ni2+ substitution effect in Co1-xNixFe2O4 (where x?=?0, 0.25, 0.5, 0.75 and 1) nanoparticles were fabricated by solution combustion route using mixture of carbamide and glucose as fuels for the first time. As prepared samples exhibit spinel cubic structure with lattice parameters which decreases linearly with increase in Ni2+ concentration. The M-H loops reveals that saturation magnetization(Ms), coercive field(Hc) remanence magnetization(Mr) and magnetron number(ηB) decreases significantly with increasing Ni2+ substitution. The variation of saturation magnetization has been explained on the basis of Neel's molecular field theory. The coercive field(Hc) is found strongly dependent on the concentration of Ni2+ and decrease of coercivity suggests that the particles have single domain and exhibits superparamagnetic behavior. The Mössbauer spectroscopy shows two ferrimagnetically relaxed Zeeman sextets distribution at room temperature. The dependence of Mössbauer parameters such as isomer shift, quadru pole splitting, line width and hyperfine magnetic field on Ni2+ concentration have been discussed. Hence our results suggest that synthesized materials are potential candidate for power transformer application.  相似文献   

8.
Novel polycrystalline Ni0.5Zn0.5Sm0.025HoxFe1.975−xO4 (x = 0-0.06) ferrites were fabricated by a traditional solid-state reaction sintering method. The codoping effects of Sm and Ho on the microstructure, magnetism, and high-frequency performance of Ni–Zn ferrites were investigated. The substitution of Sm3+ and Ho3+ ions led to an apparent increase in the lattice constants. However, further increasing the addition of both dopants introduced SmFeO3 or HoFeO3 foreign phases at the boundaries of the polycrystalline grains. As the content of Ho3+ ions increased, the relative density and average grain size of the specimens decreased accordingly. Moreover, the substitution of Sm3+ clearly decreased the saturation magnetization and complex permeability, which further decreased with the doping of Ho3+. The evolution of the Curie temperature showed an opposite trend, reaching the highest temperature of 278°C when x = 0.03. Similarly, the coercivity and resonance frequencies also displayed opposite trends compared to those of the saturation magnetization and complex permeability. The codoping of Sm3+ and Ho3+ more effectively lowered the magnetic and dielectric loss tangent of the specimens compared with the undoped or single dopant modified ferrites.  相似文献   

9.
《Ceramics International》2020,46(6):7842-7849
W-type BaSr Co2 hexaferrites doped with Mn and Ti of the following composition Ba0.5Sr0.5Co2MnxTixFe16-2xO27 (x = 0.00, 0.50, 1.00, 1.50, 2.00, 2.50) were synthesized by sol-gel auto ignition method. The structure, phase, spectral bands, microstructure, and magnetic behaviors of the MnTi doped BaSr Co2 W-type ferrites were determined using XRD, FTIR, FESEM, and VSM respectively. Structural and physical parameters such as lattice parameters ‘a’ and ‘c’, crystallite size, cell volume, micro strain, porosity, bulk and X-ray density of the MnTi doped BaSr Co2 W-type hexaferrites were evaluated. The detailed and refined structural properties were determined using the Rietveld refinement of the MnTi doped BaSr Co2 W-type hexagonal ferrites. MAUD software was used for the refinement of the MnTi doped BaSr Co2 W-type hexagonal ferrites patterns. Rb, Rwp and Rexp values were found in the range of 10–19 for MnTi doped BaSr Co2 W-type hexagonal ferrites. The force constants at respective sites were also investigated through FTIR studies. FESEM images showed the hexagonal shape of the MnTi doped hexaferrites. Magnetic properties were estimated from the hysteresis loops recorded by VSM. The magnetic properties were decreased with the MnTi doping. However, anisotropic field was also found to be decreased with MnTi doping. This might be due to the ionic radii and nonmagnetic substitution of Ti in BaSr Co2 W-type hexagonal ferrites. The low coercivity values of these ferrites suggest the use of MnTi doped BaSr Co2 W-type ferrites for microwave absorption, memory devices and magnetic radar absorbing materials (MRAMs) in high frequency regime.  相似文献   

10.
11.
《Ceramics International》2017,43(17):14938-14944
Ni-Zn ferrites with a nominal composition of Ni0.5Zn0.5HoxFe2-xO4 (x = 0–0.06) were prepared by conventional solid state reaction through using analytical-grade metal oxides powders as raw materials. The phase composition, microstructure, magnetic properties and dielectric performance of the as-prepared samples were investigated. The doped Ho3+ ions could enter into the crystal lattice of the resultant spinel ferrites, causing the expansion of the unit cell, reaching a saturated state when x = 0.015; and the additional Ho3+ ions would form a foreign HoFeO3 phase at the grain boundary. The grain size and densification of the samples initially decreased after a small amount of Ho3+ ions was doped, but then increased with more Ho3+ ions added. The saturation magnetization decreased gradually with increasing substitution level of Ho3+ ions. The Curie temperature and coercivity raised initially and declined later with increasing content of Ho3+ ions in the samples, reaching their maximums of 305 °C with x = 0.015 and 2.99 Oe with x = 0.03, respectively. The variation of complex permeability versus Ho3+ ions substitution level presented an opposite trend to that of coercivity. The dielectric loss increased slightly after the introduction of a small amount of Ho3+ ions, but reduced significantly with more Ho3+ ions doped.  相似文献   

12.
《Ceramics International》2017,43(9):6987-6995
CoxNi1−xFe2O4 ferrites (x=0, 0.2, 0.4, 0.4, 0.6, 0.8 and 1) were prepared by a sol-gel auto-combustion method. The samples were structurally characterized by X-ray diffractometry (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDX), and Fourier transform infrared spectroscopy (FTIR). The XRD patterns confirmed single phase formation of spinel structure. Cation distribution estimated from XRD data suggested the mixed spinel structure of ferrite. The EDX analysis was in good agreement with the nominal composition. The results of FTIR analysis indicated that the functional groups of Co-Ni spinel ferrite were formed during the combustion process. According to FE-SEM micrographs, by addition of cobalt ion the average particle size of substituted nickel ferrite was gradually became smaller from 450 nm to 280 nm. Magnetic measurement using vibrating sample magnetometer (VSM) showed an increase in saturation magnetization and coercivity by Co2+ substitution in nickel ferrite. For Co0.8Ni0.2Fe2O4 sample, Ms and Hc reaches as high as 93 emu/g and 420 Oe, respectively. The reflection loss properties of the nanocomposites were investigated in the frequency range of 8–12 GHz, using vector network analyzer (VNA). Cobalt substitution could enhance reflection loss of NiFe2O4 ferrite. The maximum reflection loss value of the Co2+ substituted Ni ferrite was ~ −26 dB (i.e. over 99% absorption) at 9.7 GHz with bandwidth of 4 GHz (RL<– 10 dB) through the entire frequency range of X-band.  相似文献   

13.
《Ceramics International》2022,48(3):3417-3425
Zn-doped nickel ferrite nanoparticles (ZnxNi(1-x)Fe2O4) were synthesized using the co-precipitation technique. The structural and compositional studies of the ZnxNi(1-x)Fe2O4 nanoparticles revealed their face-centred cubic spinel structure and an appropriate amount of Zn doping in nickel ferrite nanoparticles, respectively. The morphological analysis had been carried out to obtain the particle size of the synthesized nanoparticles. The magnetic studies revealed the superparamagnetic nature of the ZnxNi(1-x)Fe2O4 nanoparticles, and the maximum magnetization of 30 emu/g for the Zn0.2N0.8Fe2O4 sample. The M ? H curves were fitted with the Langevin function to obtain the magnetic particle diameter of ZnxNi(1-x)Fe2O4 nanoparticles. The electrical conduction in ZnxNi(1-x)Fe2O4 nanoparticles was explained through the Verway hopping mechanism. The Zn0.2N0.8Fe2O4 nanoparticle exhibited a higher electrical conductivity of 42 μS/cm and surface charge of ?29/7 mV due to the enhanced hopping of Fe3+ ions in the octahedral sites. Owing to this nature, they were identified as the suitable candidates in the applications such as thermoelectrics, hyperthermia, magnetic coating and for the preparation of conducting ferrofluids.  相似文献   

14.
《Ceramics International》2020,46(10):16126-16134
We prepared pure-phase NixMn1-xCo2O4 (x = 0, 0.25, 0.5, 0.75 and 1) nanoparticles using a low-temperature solid-state reaction method. Magnetization measurement results showed that with Ni doping, the Curie temperature and coercivity of NixMn1-xCo2O4 increased. Multiple magnetic phases that transition from paramagnetic to ferrimagnetic to ferrimagnetic and antiferromagnetic were observed to coexist in the Ni0.5Mn0.5Co2O4 sample. At low temperatures, the ferromagnetic and antiferromagnetic phases coexist in NixMn1-xCo2O4 (x = 0 and 0.25), and as the concentration of Ni increases, NixMn1-xCo2O4 (x = 0.75 and 1) show a spin glass state. The structure of NixMn1-xCo2O4 (x < 0.5) is mainly affected by cation defects, and by cation substitution when x is greater than 0.5. The results of first-principles calculations show that covalent bonds exist in NixMn1-xCo2O4 and that the strength of the Ni-O bond is greater than that of the Mn-O bond.  相似文献   

15.
《Ceramics International》2019,45(13):16512-16520
Zinc-substituted cobalt oxide nanoparticles (ZnxCo3-xO4, 0 ≤ x ≤ 0.5) were produced by microwave refluxing technique. The structural, microstructural and magnetic properties of these samples were studied using X-ray diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and magnetic property measurement system (MPMS) respectively. XRD and TEM analyses confirmed the single phase nature for all the samples. Rietveld analysis of the samples further confirmed the substitution of Zn-ions into the Co3O4 lattice. The chemical states of the elements were studied using X-ray photoelectron spectroscopy (XPS), which suggest the presence of Zn2+, Co2+, and Co3+ ions in the samples. The maximum saturation magnetization (MS) values of 0.33 Am2/kg was obtained for x = 0.01 sample, and then it continuously reduced with increased Zn content. The dielectric property of the samples was studied in the frequency range of 40 Hz–110 MHz. The samples x = 0.05 and 0.5 displayed the lowest conductivity due to the narrow size distribution of grains.  相似文献   

16.
Magnetic complex oxides of iron nanoparticles are among the most important materials that have been studied. They have been widely used in different areas such as electronic devices, information storage, biomedical areas, drug-delivery, catalyst, and wastewater treatment. In different applications of nanoparticles, the shape and size of particles are very important because the electrical, optical, and magnetic properties of the nanoparticles depend on their dimension. In this study, nanoparticles of cobalt, nickel, and zinc ferrites were synthesized in uniform size by an electrochemical technique. First, the anode was made electrochemically by depositing each metal of zinc, nickel, and cobalt on the iron sheet from the solutions of 0.1 M Co2+, Ni2+, and Zn2+ ions as the precursor. Then the electrosynthesis of ferrite nanoparticles was performed in a second electrochemical cell where the prepared electrode was anode and stainless steel (316L) was cathode in the electrolyte solution of CTAB 0.04 M. The optimized value of current density was applied to the electrochemical cell. After then the same synthesis was carried out in the magnetic field supplied by two magnets. The prepared nanoparticles were characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM). The magnetic properties were investigated by vibrating sample magnetometer (VSM). The comparison of two samples prepared in the magnetic field and without it showed the average size of the samples synthesized in the magnetic field was in the narrower size distribution of 20–30 nm and the saturation magnetization of the nanoparticles increased in the magnetic field.  相似文献   

17.
《Ceramics International》2016,42(12):13773-13782
Nickel and cobalt substituted manganese ferrite nanoparticles (NPs) with the chemical composition NixCoxMn1–2xFe2O4 (0.0≤x≤0.5) NPs were synthesized by one-pot microwave combustion route. The effect of co-substitution (Ni, Co) on structural, morphological and magnetic properties of MnFe2O4 NPs was investigated using XRD, FT-IR, SEM, VSM and Mössbauer spectroscopic techniques. The cation distribution of all products were also calculated. Both XRD and FT-IR analyses confirmed the synthesis of single phase spinel cubic product for all the substitutions. Lattice constant decreases with the increase in concentration of both Co and Ni in the products. From 57Fe Mössbauer spectroscopy data, the variations in line width, isomer shift, quadrupole splitting and hyperfine magnetic field values with Mn2+, Ni2+ and Co2+ substitution have been determined. While the Mössbauer spectra collected at room temperature for the all samples are composed of magnetic sextets, the superparamagnetic doublet is also formed for MnFe2O4 and Ni0.2Co0.2Mn0.6Fe2O4 NPs. The magnetization and Mössbauer measurements verify that MnFe2O4 and Ni0.2Co0.2Mn0.6Fe2O4 NPs have superparamagnetic character. The saturation and remanence magnetizations, magnetic moment and coercive field were determined for all the samples. Room temperature VSM measurements reveals saturation magnetization value close to the bulk one. It has been observed that the saturation magnetization and coercive field increase with respect to the Ni and Co concentrations.  相似文献   

18.
《Ceramics International》2022,48(10):14307-14314
The impact of Ni2+ and Zr4+ on the physical properties of LiFe2O4 ferrites is investigated and synthesized via the microemulsion technique. X-ray diffraction pattern of pure and substituted lithium ferrites exhibited spinel structure. The constant lattice increases with increasing dopants concentration up to x = 0.2 and decreases for higher x. The crystallite size value varies from 8.15 to 12.37 nm. The incorporation of heavier ions with lighter ions increased the X-ray density of lithium ferrites. The value of dielectric parameters such as dielectric constant and dielectric loss decreases with the substation of Ni2+ and Zr4+ ions. The Maxwell Wagner model ascribes the decrease in dielectric parameters. Substituted lithium ferrites observe a high Q value. The magnetic studies revealed that saturation magnetization and coercivity were significantly affected by Ni2+ and Zr4+ ions. The inclusion of Ni2+ and Zr4+ ions improves the dielectric and magnetic properties making it suitable for high-frequency applications.  相似文献   

19.
《Ceramics International》2022,48(9):12490-12496
Nowadays, developing nickle zinc ferrites with excellent magnetic and gyromagnetic properties are of great importance for solving the matching problem of 5G communication system. However, much is discussed about soft magnetic properties, but little is reported gyromagnetic properties that is critical for microwave device applications. Herein, Nb5+ ions substituted Ni0.29Cu0.18Zn0.53NbxFe2-xO4 (x = 0.00-0.05), possessing high saturation magnetization, approriate initial permeability, high cut-off frequency and low ferromagnetic resonance linewidth (@9.55 GHz), were synthesized by low-temperature firing (900 °C). The phase structure and morphology evolutions were studied in detail. The results of morphology observations revealed that Nb5+ substitution has significant role in determining produce compact and uniform microstructures of NiCuZn ferrites via suppress the grain growth, which further corresponding enhance the magnetic and gyromagnetic properties. As a result, a uniform and compact grain size can be obtained, corresponding to the change of magnetic and gyromagenetic properties have different trends. Enhanced magnetic and gyromagnetic performance including high initial permeability (μ' = 203 @1 MHz), saturation magnetization (4πMs = 3966 Gauss) and low ferromagnetic resonance linewidth (ΔH = 203 Oe) of the NiCuZn ferrites is achieved though adjusting Nb5+ ions substitution. More importantly, this work not only for low temperature co-fired ceramic (LTCC) technology but also for high frequency and microwave frequency devices including phase shifter and radars.  相似文献   

20.
The simple and cost-effective powder metallurgy method has been employed to prepare a series of copper substituted cobalt chromium ferrites CuxCo1-xCr0.5Fe2O4 (x?=?0, 0.2, 0.4, 0.6, 0.8, 1.0). The calcination of the samples has been carried out at 1100?°C for 24?h. X-Ray Diffractometer (XRD) and Fourier transform infrared spectroscopy (FTIR) measurement proves the formation of cubic spinel ferrites. Vibrating Sample Magnetometer (VSM)) analysis revealed that the substitution of copper in the Co-Cr ferrites leads to reduce the magnetic moment that in turns decrease the saturation magnetization and coercivity. The Ultra violet visible spectroscopy (UV–VIS) showed that the band gap energy increases with copper substitution which is due to reduction in crystallite size. The results indicate that the replacement of copper with the cobalt-chromium ferries strongly influences the crystal structure, microstructure, magnetic parameters and band gap energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号