首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
School-age children are particularly susceptible to exposure to air pollutants. To quantify factors affecting children's exposure at school, indoor and outdoor microenvironmental air pollutant concentrations were measured at 32 selected primary and secondary schools in Hong Kong. Real-time PM10, PM2.5, NO2, and O3 concentrations were measured in 76 classrooms and 23 non-classrooms. Potential explanatory factors related to building characteristics, ventilation practice, and occupant activities were measured or recorded. Their relationship with indoor measured concentrations was examined using mixed linear regression models. Ten factors were significantly associated with indoor microenvironmental concentrations, together accounting for 74%, 61%, 46%, and 38% of variations observed for PM2.5, PM10, O3, and NO2 microenvironmental concentrations, respectively. Outdoor concentration is the single largest predictor for indoor concentrations. Infiltrated outdoor air pollution contributes to 90%, 70%, 75%, and 50% of PM2.5, PM10, O3, and NO2 microenvironmental concentrations, respectively, in classrooms during school hours. Interventions to reduce indoor microenvironmental concentrations can be prioritized in reducing ambient air pollution and infiltration of outdoor pollution. Infiltration factors derived from linear regression models provide useful information on outdoor infiltration and help address the gap in generalizable parameter values that can be used to predict school microenvironmental concentrations.  相似文献   

2.
Correctional centers (prisons) are one of the few non‐residential indoor environments where smoking is still permitted. However, few studies have investigated indoor air quality (IAQ) in these locations. We quantified the level of inmate and staff exposure to secondhand smoke, including particle number (PN) count, and we assessed the impact of the smoking ban on IAQ. We performed measurements of indoor and outdoor PM2.5 and PN concentrations, personal PN exposure levels, volatile organic compounds (VOCs), and nicotine both before and after a complete indoor smoking ban in an Australian maximum security prison. Results show that the indoor 24‐h average PM2.5 concentrations ranged from 6 (±1) μg/m3 to 17 (±3) μg/m3 pre‐ban. The post‐ban levels ranged from 7 (±2) μg/m3 to 71 (±43) μg/m3. While PM2.5 concentrations decreased in one unit post‐ban, they increased in the other two units. Similar post‐ban increases were also observed in levels of PN and VOCs. We describe an unexpected increase of indoor pollutants following a total indoor smoking ban in a prison that was reflected across multiple pollutants that are markers of smoking. We hypothesise that clandestine post‐ban smoking among inmates may have been the predominant cause.  相似文献   

3.
4.
A six‐month winter‐spring study was conducted in a suburb of the northern European city of Kuopio, Finland, to identify and quantify factors determining daily personal exposure and home indoor levels of fine particulate matter (PM2.5, diameter <2.5 µm) and its light absorption coefficient (PM2.5abs), a proxy for combustion‐derived black carbon. Moreover, determinants of home indoor ozone (O3) concentration were examined. Local central site outdoor, home indoor, and personal daily levels of pollutants were monitored in this suburb among 37 elderly residents. Outdoor concentrations of the pollutants were significant determinants of their levels in home indoor air and personal exposures. Natural ventilation in the detached and row houses increased personal exposure to PM2.5, but not to PM2.5abs, when compared with mechanical ventilation. Only cooking out of the recorded household activities increased indoor PM2.5. The use of a wood stove room heater or wood‐fired sauna stove was associated with elevated concentrations of personal PM2.5 and PM2.5abs, and indoor PM2.5abs. Candle burning increased daily indoor and personal PM2.5abs, and it was also a determinant of indoor ozone level. In conclusion, relatively short‐lasting wood and candle burning of a few hours increased residents’ daily exposure to potentially hazardous, combustion‐derived carbonaceous particulate matter.  相似文献   

5.
M. Zaatari  J. Siegel 《Indoor air》2014,24(4):350-361
Particles in retail environments can have consequences for the occupational exposures of retail workers and customers, as well as the energy costs associated with ventilation and filtration. Little is known about particle characteristics in retail environments. We measured indoor and outdoor mass concentrations of PM10 and PM2.5, number concentrations of submicron particles (0.02–1 μm), size‐resolved 0.3–10 μm particles, as well as ventilation rates in 14 retail stores during 24 site visits in Pennsylvania and Texas. Overall, the results were generally suggestive of relatively clean environments when compared to investigations of other building types and ambient/occupational regulatory limits. PM10 and PM2.5 concentrations (mean ± s.d.) were 20 ± 14 and 11 ± 10 μg/m3, respectively, with indoor‐to‐outdoor ratios of 1.0 ± 0.7 and 0.88 ± 1.0. Mean submicron particle concentrations were 7220 ± 7500 particles/cm3 with an indoor‐to‐outdoor ratio of 1.18 ± 1.30. The median contribution to PM10 and PM2.5 concentrations from indoor sources (vs. outdoors) was 83% and 53%, respectively. There were no significant correlations between measured ventilation rates and particle concentrations of any size. When examining options to lower PM2.5 concentrations below regulatory limits, the required changes to ventilation and filtration efficiency were site specific and depended on the indoor and outdoor concentration, emission rate, and infiltration level.  相似文献   

6.
Singapore is a tropical country with a high density of day-care facilities whose indoor environments may be adversely affected by outdoor fine particle (PM2.5) air pollution. To reduce this problem requires effective, evidence-based exposure-reduction strategies. Little information is available on the penetration of outdoor PM2.5 into day-care environments. Our study attempted to address the following objectives: to measure indoor infiltration factor (Finf) of PM2.5 from outdoor PM2.5 and to determine the building parameters that modify the indoor PM2.5. We collected indoor/outdoor 1-min PM2.5 from 50 day-care classrooms. We noted mean Finf ± SD of 0.65 ± 0.22 in day-care rooms which are naturally ventilated and lower Finf ± SD values of 0.47 ± 0.18 for those that are air-conditioned: values which are lower than those reported in Singapore residences. The air exchange rates were higher in naturally ventilated rooms (1.47 vs 0.86 h−1). However, fine particle deposition rates were lower for naturally ventilated rooms (0.67 ± 0.43 h−1) compared with air-conditioned ones (1.03 ± 0.55 h−1) presumably due to composite rates linked to the filters within the split unit air-conditioners, higher recirculation rates, and interior surfaces in the latter. Our findings indicate that children remaining indoor in daycares where air-conditioning is used can reduce their PM2.5 exposures during outdoor pollution episodes.  相似文献   

7.
We estimated the impact of a smoke‐free workplace bylaw on non‐smoking bar workers' health in Ontario, Canada. We measured bar workers' urine cotinine before (= 99) and after (= 91) a 2004 smoke‐free workplace bylaw. Using pharmacokinetic and epidemiological models, we estimated workers' fine‐particle (PM2.5) air pollution exposure and mortality risks from workplace secondhand smoke (SHS). workers' pre‐law geometric mean cotinine was 10.3 ng/ml; post‐law dose declined 70% to 3.10 ng/ml and reported work hours of exposure by 90%. Pre‐law, 97% of workers' doses exceeded the 90th percentile for Canadians of working age. Pre‐law‐estimated 8‐h average workplace PM2.5 exposure from SHS was 419 μg/m3 or ‘Very Poor’ air quality, while outdoor PM2.5 levels averaged 7 μg/m3, ‘Very Good’ air quality by Canadian Air Quality Standards. We estimated that the bar workers' annual mortality rate from workplace SHS exposure was 102 deaths per 100 000 persons. This was 2.4 times the occupational disease fatality rate for all Ontario workers. We estimated that half to two‐thirds of the 10 620 Ontario bar workers were non‐smokers. Accordingly, Ontario's smoke‐free law saved an estimated 5–7 non‐smoking bar workers' lives annually, valued at CA $50 million to $68 million (US $49 million to $66 million).  相似文献   

8.
The risk of tobacco smoking and second‐hand smoke (SHS) exposure combined are the leading contributors to disease burden in high‐income countries. Recent studies and policies are focusing on reducing exposure to SHS in multiunit housing (MUH), especially public housing. We examined seasonal patterns of SHS levels within indoor common areas located on Boston Housing Authority (BHA) properties. We measured weekly integrated and continuous fine particulate matter (PM2.5) and passive airborne nicotine in six buildings of varying building and occupant characteristics in summer 2012 and winter 2013. The average weekly indoor PM2.5 concentration across all six developments was 9.2 μg/m3, higher during winter monitoring period (10.3 μg/m3) compared with summer (8.0 μg/m3). Airborne nicotine concentrations ranged from no detection to about 5000 ng/m3 (mean 311 ng/m3). Nicotine levels were significantly higher in the winter compared with summer (620 vs. 85 ng/m3; 95% CI: 72–998). Smoking‐related exposures within Boston public housing vary by season, building types, and resident smoking policy. Our results represent exposure disparities that may contribute to health disparities in low‐income communities and highlight the potential importance of efforts to mitigate SHS exposures during winter when outdoor–indoor exchange rates are low and smokers may tend to stay indoors. Our findings support the use of smoke‐free policy as an effective tool to eliminate SHS exposure and protect non‐smokers, especially residents of MUH.  相似文献   

9.
This study evaluated nine ventilation and filtration systems in an unoccupied 2006 house located 250 m downwind of the I‐80 freeway in Sacramento, California. Systems were evaluated for reducing indoor concentrations of outdoor particles in summer and fall/winter, ozone in summer, and particles from stir‐fry cooking. Air exchange rate was measured continuously. Energy use was estimated for year‐round operation in California. Exhaust ventilation without enhanced filtration provided indoor PM2.5 that was 70% lower than outdoors. Supply ventilation with MERV13 filtration provided slightly less protection, whereas supply MERV16 filtration reduced PM2.5 by 97‐98% relative to outdoors. Supply filtration systems used little energy but provided no benefits for indoor‐generated particles. Systems with MERV13‐16 filter in the recirculating heating and cooling unit (FAU) operating continuously or 20 min/h reduced PM2.5 by 93‐98%. Across all systems, removal percentages were higher for ultrafine particles and lower for black carbon, relative to PM2.5. Indoor ozone was 3‐4% of outdoors for all systems except an electronic air cleaner that produced ozone. Filtration via the FAU or portable filtration units lowered PM2.5 by 25‐75% when operated over the hour following cooking. The energy for year‐round operation of FAU filtration with an efficient blower motor was estimated at 600 kWh/year.  相似文献   

10.
H. Zhao  B. Stephens 《Indoor air》2017,27(1):218-229
Much of human exposure to particulate matter of outdoor origin occurs inside buildings, particularly in residences. The particle penetration factor through leaks in a building's exterior enclosure assembly is a key parameter that governs the infiltration of outdoor particles. However, experimental data for size‐resolved particle penetration factors in real buildings, as well as penetration factors for fine particles less than 2.5 μm (PM2.5) and ultrafine particles less than 100 nm (UFPs), remain limited, in part because of previous limitations in instrumentation and experimental methods. Here, we report on the development and application of a modified test method that utilizes portable particle sizing instrumentation to measure size‐resolved infiltration factors and envelope penetration factors for 0.01–2.5 μm particles, which are then used to estimate penetration factors for integral measures of UFPs and PM2.5. Eleven replicate measurements were made in an unoccupied apartment unit in Chicago, IL to evaluate the accuracy and repeatability of the test procedure and solution methods. Mean estimates of size‐resolved penetration factors ranged from 0.41 ± 0.14 to 0.73 ± 0.05 across the range of measured particle sizes, while mean estimates of penetration factors for integral measures of UFPs and PM2.5 were 0.67 ± 0.05 and 0.73 ± 0.05, respectively. Average relative uncertainties for all particle sizes/classes were less than 20%.  相似文献   

11.
Inadequate ventilation of classrooms may lead to increased concentrations of pollutants generated indoors in schools. The FRESH study, on the effects of increased classroom ventilation on indoor air quality, was performed in 18 naturally ventilated classrooms of 17 primary schools in the Netherlands during the heating seasons of 2010–2012. In 12 classrooms, ventilation was increased to targeted CO2 concentrations of 800 or 1200 ppm, using a temporary CO2 controlled mechanical ventilation system. Six classrooms were included as controls. In each classroom, data on endotoxin, β(1,3)‐glucans, and particles with diameters of <10 μm (PM10) and <2.5 μm (PM2.5) and nitrogen dioxide (NO2) were collected during three consecutive weeks. Associations between the intervention and these measured indoor air pollution levels were assessed using mixed models, with random classroom effects. The intervention lowered endotoxin and β(1,3)‐glucan levels and PM10 concentrations significantly. PM10 for instance was reduced by 25 μg/m³ (95% confidence interval 13–38 μg/m³) from 54 μg/m³ at maximum ventilation rate. No significant differences were found between the two ventilation settings. Concentrations of PM2.5 and NO2 were not affected by the intervention. Our results provide evidence that increasing classroom ventilation is effective in decreasing the concentrations of some indoor‐generated pollutants.  相似文献   

12.
To evaluate the separate impacts on human health and establish effective control strategies, it is crucial to estimate the contribution of outdoor infiltration and indoor emission to indoor PM2.5 in buildings. This study used an algorithm to automatically estimate the long-term time-resolved indoor PM2.5 of outdoor and indoor origin in real apartments with natural ventilation. The inputs for the algorithm were only the time-resolved indoor/outdoor PM2.5 concentrations and occupants’ window actions, which were easily obtained from the low-cost sensors. This study first applied the algorithm in an apartment in Tianjin, China. The indoor/outdoor contribution to the gross indoor exposure and time-resolved infiltration factor were automatically estimated using the algorithm. The influence of outdoor PM2.5 data source and algorithm parameters on the estimated results was analyzed. The algorithm was then applied in four other apartments located in Chongqing, Shenyang, Xi'an, and Urumqi to further demonstrate its feasibility. The results provided indirect evidence, such as the plausible explanations for seasonal and spatial variation, to partially support the success of the algorithm used in real apartments. Through the analysis, this study also identified several further development directions to facilitate the practical applications of the algorithm, such as robust long-term outdoor PM2.5 monitoring using low-cost light-scattering sensors.  相似文献   

13.
The daily concentration and chemical composition of PM2.5 was determined in indoor and outdoor 24‐h samples simultaneously collected for a total of 5 weeks during a winter and a summer period in an apartment sited in Rome, Italy. The use of a specifically developed very quiet sampler (<35 dB) allowed the execution of the study while the family living in the apartment led its normal life. The indoor concentration of PM2.5 showed a small seasonal variation, while outdoor values were much higher during the winter study. Outdoor sources were found to contribute significantly to indoor PM concentration especially during the summer, when the apartment was naturally ventilated by opening the windows. During the winter the infiltration of outdoor PM components was lower and mostly regulated by the particle dimensions. Organics displayed In/Out ratios higher than unity during both periods; their indoor production increased significantly during the weekends, where the family stayed mostly at home. PM components were grouped into macrosources (soil, sea, secondary inorganics, traffic, organics). During the summer the main contributions to outdoor PM2.5 came from soil (30%), secondary inorganics (29%) and organics (22%). Organics dominated both indoor PM2.5 during the summer (60%) and outdoor and indoor PM2.5 during the winter (51% and 66%, respectively).  相似文献   

14.
The aim of this study was to characterize the relationship between Indoor Air Quality (IAQ) and ventilation in French classrooms. Various parameters were measured over one school week, including volatile organic compounds, aldehydes, particulate matter (PM2.5 mass concentration and number concentration), carbon dioxide (CO2), air temperature, and relative humidity in 51 classrooms at 17 schools. The ventilation was characterized by several indicators, such as the air exchange rate, ventilation rate (VR), and air stuffiness index (ICONE), that are linked to indoor CO2 concentration. The influences of the season (heating or non‐heating), type of school (nursery or elementary), and ventilation on the IAQ were studied. Based on the minimum value of 4.2 l/s per person required by the French legislation for mechanically ventilated classrooms, 91% of the classrooms had insufficient ventilation. The VR was significantly higher in mechanically ventilated classrooms compared with naturally ventilated rooms. The correlations between IAQ and ventilation vary according to the location of the primary source of each pollutant (outdoor vs. indoor), and for an indoor source, whether it is associated with occupant activity or continuous emission.  相似文献   

15.
In low‐resource settings, there is a need to develop models that can address contributions of household and outdoor sources to population exposures. The aim of the study was to model indoor PM2.5 using household characteristics, activities, and outdoor sources. Households belonging to participants in the Mother and Child in the Environment (MACE) birth cohort, in Durban, South Africa, were randomly selected. A structured walk‐through identified variables likely to generate PM2.5. MiniVol samplers were used to monitor PM2.5 for a period of 24 hours, followed by a post‐activity questionnaire. Factor analysis was used as a variable reduction tool. Levels of PM2.5 in the south were higher than in the north of the city (< .05); crowding and dwelling type, household emissions (incense, candles, cooking), and household smoking practices were factors associated with an increase in PM2.5 levels (P < .05), while room magnitude and natural ventilation factors were associated with a decrease in the PM2.5 levels (P < .05). A reasonably robust PM2.5 predictive model was obtained with model R2 of 50%. Recognizing the challenges in characterizing exposure in environmental epidemiological studies, particularly in resource‐constrained settings, modeling provides an opportunity to reasonably estimate indoor pollutant levels in unmeasured homes.  相似文献   

16.
Abstract Various studies on indoor and outdoor particulate matter in the urban environment in the vicinity of busy arterial roads in the centre of the subtropical city of Brisbane have indicated that the revised United States Environmental Protection Agency National Ambient Air Quality Standards (US EPA NAAQS) for Particulate matter PM2.5 could be exceeded not only outdoors but also indoors. The aim of this work was to investigate outdoor exposure to submicrometer particles and their relationship with indoor exposure in a hypothetical office building located in the vicinity of a busy arterial road. The outdoor exposure values and trends were measured in terms of particle number in the submicrometer size range and were then recalculated to represent mass concentration trends. The results of this study indicate that exposure to PM0.7 particles in ambient air close to a busy road often exceeds the levels of the annual and 24-hour US EPA NAAQS PM2.5 standards. It is likely that exposure to PM2.5 is even higher, and may significantly exceed these standards.  相似文献   

17.
This paper presents a MATLAB® Simulink air-quality model of a commercial building with a heating, ventilation, and air conditioning (HVAC) system in Fairbanks, Alaska. Outdoor and indoor real-time fine particulate matter (PM2.5) levels were measured at this building during a summer wild-fire smoke episode and then during a winter period. The correlation coefficient between the model-predicted and the measured indoor concentrations was 0.99 for the summer and 0.98 for the winter, justifying the usability of the model for further studies. An HVAC control algorithm was developed that reduces the indoor PM2.5 levels. The algorithm was tested using the HVAC Simulink model and the outdoor PM2.5 data from the summer smoke episode. The average indoor PM2.5 level with this control algorithm was 65% lower than with the regular control. Thanks to the PM2.5 control strategy being automatically engaged only during episodes, it was shown to have the potential of significantly reducing the indoor PM2.5 levels without significantly compromising the purpose of the original control strategy.  相似文献   

18.
Y. Yoda  K. Tamura  M. Shima 《Indoor air》2017,27(5):955-964
Endotoxins are an important biological component of particulate matter and have been associated with adverse effects on human health. There have been some recent studies on airborne endotoxin concentrations. We collected fine (PM2.5) and coarse (PM10‐2.5) particulate matter twice on weekdays and weekends each for 48 hour, inside and outside 55 homes in an urban city in Japan. Endotoxin concentrations in both fractions were measured using the kinetic Limulus Amebocyte Lysate assay. The relationships between endotoxin concentrations and household characteristics were evaluated for each fraction. Both indoor and outdoor endotoxin concentrations were higher in PM2.5 than in PM10‐2.5. In both PM2.5 and PM10‐2.5, indoor endotoxin concentrations were higher than outdoor concentrations, and the indoor endotoxin concentrations significantly correlated with outdoor concentrations in each fraction (R2=0.458 and 0.198, respectively). Indoor endotoxin concentrations in PM2.5 were significantly higher in homes with tatami or carpet flooring and in homes with pets, and lower in homes that used air purifiers. Indoor endotoxin concentrations in PM10‐2.5 were significantly higher in homes with two or more children and homes with tatami or carpet flooring. These results showed that the indoor endotoxin concentrations were associated with the household characteristics in addition to outdoor endotoxin concentrations.  相似文献   

19.
Exposure to fine particulate matter (PM2.5) is a major contributor to the global human disease burden. The indoor environment is of particular importance when considering the health effects associated with PM2.5 exposures because people spend the majority of their time indoors and PM2.5 exposures per unit mass emitted indoors are two to three orders of magnitude larger than exposures to outdoor emissions. Variability in indoor PM2.5 intake fraction (iFin,total), which is defined as the integrated cumulative intake of PM2.5 per unit of emission, is driven by a combination of building‐specific, human‐specific, and pollutant‐specific factors. Due to a limited availability of data characterizing these factors, however, indoor emissions and intake of PM2.5 are not commonly considered when evaluating the environmental performance of product life cycles. With the aim of addressing this barrier, a literature review was conducted and data characterizing factors influencing iFin,total were compiled. In addition to providing data for the calculation of iFin,total in various indoor environments and for a range of geographic regions, this paper discusses remaining limitations to the incorporation of PM2.5‐derived health impacts into life cycle assessments and makes recommendations regarding future research.  相似文献   

20.
During 13 winter weeks, an experimental archeology project was undertaken in two Danish reconstructed Viking Age houses with indoor open fireplaces. Volunteers inhabited the houses under living conditions similar to those of the Viking Age, including cooking and heating by wood fire. Carbon monoxide (CO) and particulate matter (PM2.5) were measured at varying distances to the fireplace. Near the fireplaces CO (mean) was 16 ppm. PM2.5 (mean) was 3.40 mg/m3, however, measured in one house only. The CO:PM mass ratio was found to increase from 6.4 to 22 when increasing the distance to the fire. Two persons carried CO sensors. Average personal exposure was 6.9 ppm, and from this, a personal PM2.5 exposure of 0.41 mg/m3 was estimated. The levels found here were higher than reported from modern studies conducted in dwellings using biomass for cooking and heating. While this may be due to the Viking house design, the volunteer's lack of training in attending a fire maybe also played a role. Even so, when comparing to today's issues arising from the use of open fires, it must be assumed that also during the Viking Age, the exposure to woodsmoke was a contributing factor to health problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号