首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Reaction sintered SiC ceramics were prepared by the silicon melt infiltration method over temperatures of 1450?1550°C. The effects of the carbon and silicon contents of the starting materials as well as the sintering temperature and time on the thermal conductivities and microstructures of the ceramic materials were studied. The thermal conductivities and microstructures of the samples were characterised using thermal conductivity measurements, X-ray diffraction analysis, scanning electron microscopy, energy-dispersive X-ray spectroscopy and mercury injection porosimetry. The results showed that sintering temperature and time as well as the carbon and silicon contents of the green specimens are the main factors affecting the microstructure and porosity of reaction bonded SiC ceramics. Increasing the reaction temperature and time decreased the porosity of the ceramics. This was due to the infiltration of the silicon melt into the ceramic specimens. The thermal conductivity and porosity of the sample sintered at 1550°C for 3 h in an argon atmosphere were 102·5 W m K?1 and 0·3% respectively.  相似文献   

2.
A novel fabrication route to make macroporous silicon carbide (SiC) has been proposed in this study. The route is composed of the following two steps: the fabrication of porous α‐SiC/novolac‐type phenolic composite using hexamethylenetetramine (HMT) as a curing/blowing agent for the novolac monomer and a conventional reaction‐bonded (RB) sintering of the composite. The α‐SiC/novolac‐type phenolic composite was carbonized at 800°C for 2 h in N2 gas and then reacted with the molten silicon at 1450°C for 30 min under vacuum, resulting in the macroporous RB‐SiC with an open porosity of 48% and relatively large pore size of ~110 μm. The compressive strength of the macroporous RB‐SiC was 113 MPa, which is relatively high compared to those reported for macroporous SiC of equivalent porosities and pore sizes.  相似文献   

3.
Porcelain green bodies with various silicon carbide contents (0-3 wt.%) were prepared from a porcelain tile powder as a major raw material and SiC particle as an additive, and were sintered at 1000-1240 °C. The samples were systematically characterized by the X-ray diffraction (XRD), scanning electron microscope (SEM) and metallurgical microscope. Effects of the SiC content and sintering temperature on the pore size, SiC particle size and sintered density were investigated in detail, and the correlative mechanism was also discussed. The SiC particle size decreased and the pore size augmented with increasing the sintering temperature. The sintered density decreased and the pore size enlarged with increasing the SiC content. The experimental results indicate that a small amount of SiC can cause porcelain ceramics to foam during sintering, and a foaming origin of the polishing porcelain waste during sintering could be attributed to the oxidation reaction of SiC particles under high temperature and alkaline molten salt conditions.  相似文献   

4.
The main purpose of study was to provide a common synergy using Ag+‐doped calcium phosphate powder and high‐temperature‐stable TiO2 for antibacterial and photocatalytic tile applications. Thermally stable SiO2‐modified TiO2 active layer was deposited on Ag+‐activated ceramic tiles by spray coating. The results showed that a nearly 100% cleanability degree was detected for SiO2‐modified TiO2 (TS)‐coated antibacterial tiles when compared uncoated and unmodified TiO2‐coated tiles. Antibacterial tests and colorimetric analyses indicated that ceramic tiles provide both antibacterial and photocatalytic properties simultaneously.  相似文献   

5.
A novel method was developed to produce ceramic foams from a silicone precursor which was foamed and vulcanized at room temperature. Silicone foams were prepared by platinum‐catalyzed cross‐linking and dehydrogenation of reactive polysiloxanes. Silicone foams were converted to ceramic foams after being pyrolyzed at 1200°C in argon. Near‐net‐shape polymer‐to‐ceramic conversion was achieved when SiC particles were added to the polymer as a solid filler. A simple physical model was created to describe the rising and pyrolysis of the silicone foam, and was validated by experimental data. Foam density was largely dependent on the content of ethanol, which was used as a chemical blowing agent. Up to 1.8 wt% ethanol was effective in driving foam rising without leading to foam collapse. SiC filler helped reduce weight loss and volumetric shrinkage during pyrolysis, and slightly increased foam density. Scanning electron microscopy indicated that although incorporating a solid filler helps to reduce the bulk shrinkage, it cannot prevent local microcracking and residual porosity.  相似文献   

6.
瓷质抛光砖表面显微结构与防污性能的关系探讨   总被引:5,自引:2,他引:5  
采用光学显微镜、扫描电镜等对抛光砖的表面显微结构进行了研究。结果表明:气孔率对抛光砖的防污性能有明显影响,但抛光砖中石英晶体在冷却过程中与玻璃体膨胀系数的差异产生的热应力,促使玻璃体沿石英周边形成了微裂纹,抛光时机械力的作用使晶粒剥落造成表面孔洞,是造成瓷质抛光砖容易吸污的主要原因之一。  相似文献   

7.
The fretting wear behavior of self‐mated Y‐TZP dental materials obtained by nonconventional microwave and conventional sintering has been investigated. Two 3Y‐TZP materials, a widely utilized commercial dental ceramic (LAVA) and a lab‐prepared 3Y‐TZP powder based equivalent have been assessed. Relative density and mechanical properties as well as the grain size variations upon sintering have been evaluated. After exposure to selected gross slip regime fretting wear conditions, the wear tracks have been characterized allowing the measurement of the coefficient of friction, track profiles, and pit features. The results indicate that microwave sintering results in a similar fretting wear behavior as observed for conventional‐sintered 3Y‐TZP, as the measured volumetric wear loss is of a comparable order of magnitude. Regarding the influence of the grain size, the analysis revealed that a large grain size (>300 nm) results in an increased wear volume and that a higher resistance to fretting wear is constrained to a mid‐range particle size (100–250 nm). Since the fracture toughness of all investigated ceramic grades was comparable, the influence of the fracture toughness on fretting could not be assessed. Abrasive grooving, delamination, and microcracking have been identified as major wear mechanisms inside the wear tracks for both conventional‐ and microwave‐sintered 3Y‐TZP. In general, microwave sintering can provide 3Y‐TZP dental materials with a comparable fretting wear resistance as that observed for conventional sintering using lower dwell sintering temperatures and a shorter processing time.  相似文献   

8.
气相硅反应性渗入法制备橡木结构SiC陶瓷   总被引:2,自引:0,他引:2  
钱军民  王晓文  金志浩 《硅酸盐学报》2004,32(12):1455-1458
橡木经1200℃高温真空碳化转化为碳模板,再用反应性渗入方法在1500~1600℃、Ar气氛下气相渗硅0.5~8h,制成一种具有橡木显微结构的多孔SiC陶瓷。采用XRD和SEM对其物相变化和显微结构进行了表征。结果表明:随反应时间的延长,木炭的转化率增大,弯曲强度显著提高,而气孔率变化不大。在1600℃下反应8h时,木炭几乎完全转变成具有橡木显微结构的β-SiC陶瓷,其弯曲强度和气孔率分别为42.1MPa和46.4%。此外,还对气相Si在木炭中的渗入-反应机理进行了简单介绍。  相似文献   

9.
Residual stresses were measured on numerous multi‐curved, ballistic tiles made from either silicon carbide or boron carbide. Residual stresses were measured at 155 locations to determine what affect parameters such as material, material processing, tile geometry, and manufacturer had on residual stress type and magnitude. 23% of data points had tensile residual stress. The highest residual stresses were measured in tiles with either the largest surface area or smallest plate thickness. Higher stresses were measured in silicon carbide tiles compared with boron carbide tiles. Residual stresses in tiles consolidated by hot pressing measured on average 10 MPa higher than those by pressureless sintering.  相似文献   

10.
Biomorphic SiC fabric ceramic was synthesised by in situ reactive molten silicon infiltration process using artificial ramie fibres’ template, phenolic resin, and silicon. The phase compositions, microstructure, and physical characteristics of the biomorphic fabric ceramic were characterised and tested. The results show that the final ceramic retains the ramie fabric structure, and presents duplex microstructure including biomorphic SiC fibres and network SiC ceramic around the biomorphic fibres. This biomorphic SiC fabric ceramic is constituted by 95.8% of SiC, has a low density of 1.02?g?cm?3 and a high porosity of 63.7%, and shows low linear shrinkages and better electrical resistivity along the fibre axis. The uniform and fine SiC particles with the size of ~4?µm indicate that the reaction–formation mechanism is the dissolution of carbon and the precipitation of SiC, without a second precipitation.  相似文献   

11.
This paper examines the relationship of certain red ceramic roofing tile properties to roofing tile biodeterioration. The following properties were studied: apparent porosity, roughness, and the presence or absence of two types of coatings.The effect of apparent porosity was studied by varying the peak firing temperature of a standard industrial red ceramic roofing tile composition and by preparing several clay mixtures, of different chemical and mineralogical composition, that were fired at various peak temperatures. The effect of roofing tile roughness was determined by either polishing or sanding fired standard red roofing tiles. A waterproof ceramic glaze coating and a photocatalytic coating were formulated to analyse the effect of the presence of different types of coatings. Roofing tile bioreceptivity was evaluated with a method developed in a previous study using the cyanobacteria Oscillatoria sp, which enabled roofing tile resistance to microbial colonization to be determined.As expected, bioreceptivity rose as apparent porosity (measured as water absorption) increased, enabling possible water retention, which favours biological growth. Similarly, greater roughness encouraged micro-organism adhesion and raised bioreceptivity. It was found that, after prolonged exposure periods (several months) under very favourable conditions for biological colonization, roofing tiles coated with the waterproof ceramic glaze were colonized. However, glazed standard red roofing tiles covered with a TiO2 photocatalytic coating exhibited practically no biological growth under the test conditions used, even after long exposure times, owing to the chemical-physical effect of the TiO2-based coating.  相似文献   

12.
Reaction‐bonded silicon carbide (RBSC) was prepared by ceramic injection molding (CIM) technique with feedstocks containing silicon carbide (SiC), a wax‐based organic system and different amounts of carbon black. As a critical effect of the reaction sintering process, carbon was introduced from the carbon black and the decomposition product of the organic polymers, respectively. This study described the influence of carbon content on the mixing and injection process firstly and then emphasized the debinding process since it played a large role in the process of the pyrolysis of organic. Results indicated that the preferable thermal debinding was performed in N2 and the optimal performance was obtained for RBSC with 7 wt.% of carbon black, with the density of 2.98 g/cm3, apparent porosity of 0.24%, bending strength of 301.59 MPa and fracture toughness of 4.18 MPa·m1/2.  相似文献   

13.
Spark plasma sintered pure silicon carbide (SiC) and nanostructured ferritic alloy‐silicon carbide (NFA‐SiC) systems are investigated in a water vapor containing air atmosphere at elevated temperatures up to 1000°C. Both of them exhibit excellent corrosion resistance with a dense amorphous SiO2 layer as the main oxidation barrier. Crystalline α‐quartz and α‐cristobalite from the oxidation of silicides and SiC, respectively, further benefit the corrosion resistance. For the new NFA‐SiC system, the original graphite and silicide phases can be desirably sustained. The NFA‐SiC materials have promising applications in high temperature moist environments and are especially important for nuclear reactor cladding.  相似文献   

14.
《Ceramics International》2020,46(5):5773-5778
In this research work, the effects of silicon carbide (SiC) as the most important reinforcement phase on the densification percentage and mechanical characteristics of zirconium diboride (ZrB2)-matrix composites were studied. In this way, a monolithic ZrB2 ceramic (as the baseline) and three ZrB2 matrix specimens each of which contains 25 vol% SiC as reinforcement in various morphologies (SiC particulates, SiC whiskers, and a mixture of SiC particulates/SiC whiskers), have been processed through spark plasma sintering (SPS) technology. The sintering parameters were 1900 °C as sintering temperature, 7 min as the dwell time, and 40 MPa as external pressure in vacuum conditions. After spark plasma sintering, a relative density of ~96% was obtained (using the Archimedes principles and mixture rule for evaluation of relative density) for the unreinforced ZrB2 specimen, but the porosity of composites containing SiC approached zero. Also, the assessment of sintered materials mechanical properties has shown that the existence of silicon carbide in ZrB2 matrix ceramics results in fracture toughness and microhardness improvement, compared to those measured for the monolithic one. The simultaneous addition of silicon carbide particulates (SiCp) and whiskers (SiCw) showed a synergistic effect on the enhancement of mechanical performance of ZrB2-based composites.  相似文献   

15.
The production of ceramic tiles with larger sizes and reduced thickness has increased the challenge of producing high-quality ceramic tiles in short single-firing cycles. For porcelain tiles, the pressing step is of upmost importance for the microstructure of the green bodies. The particle size distribution, mineral composition of the pastes and porosity before firing define the water flow during the decoration process. Hydro deformation is the curvature of unfired ceramic tiles caused by water absorption during the decoration step before firing. In this work, the hydro deformation is studied in function of tile thickness, compaction, and clay composition according to a 2K factorial design. Two compositions of porcelain tiles (glazed and polished) were pressed at two thicknesses (3–6 mm) and pressing pressures (35.5–49.8 MPa) forming ceramic tiles with 55 × 110 mm² of surface area. Chemical (XRF), mineralogical (XRD), thermogravimetric (TG), specific surface area (BET), granulometric, bulk density, and porosity analyses were performed for the green tiles of both compositions. To simulate the hydro deformation during the decoration step, the curvature (mm) of the tiles was studied within a 0–180 min interval. The water absorption rate through the surface (g.m−2·s−1) of the tiles in an interval of 0–180 s was studied as a function of thickness, pressure and porcelain tile composition. As a result, the thickness of the tiles can change the curvatures from concave to convex. Pressing conditions and composition of the tiles can change the water absorption rates. Porcelain tiles with higher content of clay minerals develop convex curvatures. For tiles with lower content of clay minerals, concave curvatures were developed.  相似文献   

16.
Large‐scale ultra‐long 6H–SiC nanowires were in situ synthesized on the as‐prepared SiC–Si ceramic substrate using graphite as the carbon source and substrate as the silicon source via improving the adsorbed O2 content on the graphite precursors using milling technology. The as‐grown nanowires were typical single crystal of hexagonal 6H–SiC with diameters of 50–100 nm and lengths of up to several millimeters (or even centimeters). Vapor‐solid mechanism was proposed for the growth mode of the as‐grown ultra‐long 6H–SiC nanowires. This study not only provided new insight into the growth mode for in situ synthesizing 6H–SiC nanowires on silicon‐based ceramics, but also suggested a new design methodology for synthesizing ultra‐long nanowires.  相似文献   

17.
Porcelainized stoneware represents a leading product in the world market of ceramic tiles, thanks to its relevant bending strength (with respect to other classes of tiles) and extremely low water absorption: these properties derive from its really low content of residual porosity. Nevertheless, an accurate investigation of the cross section of a porcelainized stoneware tile reveals a non-uniform distribution of the residual pores through the thickness, which results in a spatial gradient of properties. Porcelainized stoneware, therefore, may be looked at as a functionally graded material. In the present research, commercial porcelainized stonewares were analysed in order to define the effect of the residual porosity and its spatial distribution on the mechanical properties of tiles. Polished cross sections of porcelainized stoneware tiles were investigated by optical and scanning electron microscopy in order to define the content and distribution of residual pores as a function of distance from the working surface. For each porcelainized stoneware, the local elastic properties of the ceramic matrix were measured by a depth-sensing Vickers micro-indentation technique, then the so-obtained microstructural images and elastic properties were used to model the stoneware tile mechanical properties. In particular, the cross section of each tile was described as a multi-layered system, each layer of which was considered as a composite material formed by a ceramic matrix and residual pores. The elastic properties of each layer were predicted by applying analytical equations derived from the theory of composite materials and, as a new approach, by performing microstructure-based finite element simulations. In order to validate the proposed multi-layered model and identify the most reliable predictive technique, the numerical results were compared with experimental data obtained by a resonance-based method.  相似文献   

18.
Open cellular SiC foams with low densities were prepared by thermo‐foaming and setting (130°C–150°C) of silicon powder dispersions in molten sucrose followed by pyrolysis and reaction sintering at 1500°C. The bubbles generated in the dispersion by water vapor produced by the –OH condensation was stabilized by the adsorption of silicon particles on the air‐molten sucrose interface. The composition of a sucrose‐silicon powder mixture for producing SiC foam without considerable unreacted carbon was optimized. The sucrose in the thermo‐foamed silicon powder dispersion leaves 24 wt% carbon during the pyrolysis. The sintering additives such as alumina and yttria promoted the silicon‐carbon reaction. SiC nanowires with diameters in the range of 35–55 nm and length >10 μm observed on the cell walls as well as in the fractured strut region were grown by both vapor–liquid–solid and vapor–solid mechanisms. Large SiC foam bodies without crack could be prepared as the total shrinkage during pyrolysis and reaction sintering was only ~30 vol%. The relatively low compressive strength (0.06–0.41 MPa) and Young's modulus (14.9–24.2 MPa) observed was due to the large cell size (1.1–1.6 mm) and high porosity (93%–96%).  相似文献   

19.
The effects of boron, carbon, and silicon on the induced hot corrosion of sintered‐α (Hexoloy) and CVD‐SiC coupons were studied to elucidate the hot corrosion of SiC‐based ceramic matrix composites. The extent of corrosion was quantified after 24 hour exposures at 1000°C using mass change measurements, inductively coupled plasma optical emission spectrometry analysis of corrosion products, and optical profilometry of pitting on the substrate surface. In addition, scanning electron microscopy and X‐ray diffraction were used to better understand the morphology, distribution, and phase composition of corrosion products. It was found that Si was more resistant to hot corrosion than SiC, indicating that residual Si in a ceramic matrix composites matrix should not negatively impact hot corrosion resistance of the composite in highly oxidizing conditions. Carbon did not have a large impact on hot corrosion of SiC, whereas the presence of boron made the hot corrosion attack more severe.  相似文献   

20.
Twill multidirectional carbon-fiber-reinforced carbon and silicon carbide composites (i.e., C/C–SiC) were prepared via chemical vapor infiltration combined with reactive melt infiltration process. The effect of heat treatment (HT) on the microstructure and mechanical properties of C/C–SiC composites obtained by C/C preforms with different densities was thoroughly investigated. The results show that as the bulk density of C/C preforms increases, the thickness of the pyrolytic carbon (PyC) layer increases and open pore size distribution narrows, making the bulk density and residual silicon content of C/C–SiC composites decrease. Moreover, the flexural strength and tensile strength of the C/C–SiC composites were improved, which can be attributed to the increased thickness of the PyC layer. The compressive strength reduces due to the decrease of the ceramic phase content. HT improves the graphitization degree of PyC, which reduces the silicon–carbon reaction rate and thereby the content of the SiC phase. HT induces microcracks and porosity but not obviously affects the mechanical properties of C/C–SiC composites. However, the negative impact of HT can be compensated by the increased density of the C/C preforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号