首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The twin‐screw configuration problem arises during polymer extrusion and compounding. It consists in defining the location of a set of pre‐defined screw elements along the screw axis in order to optimize different, typically conflicting objectives. In this paper, we present a simple yet effective stochastic local search (SLS) algorithm for this problem. Our algorithm is based on efficient single‐objective iterative improvement algorithms, which have been developed by studying different neighborhood structures, neighborhood search strategies, and neighborhood restrictions. These algorithms are embedded into a variation of the two‐phase local search framework to tackle various bi‐objective versions of this problem. An experimental comparison with a previously proposed multi‐objective evolutionary algorithm shows that a main advantage of our SLS algorithm is that it converges faster to a high‐quality approximation to the Pareto front.  相似文献   

2.
The twin-screw configuration problem (TSCP) arises in the context of polymer processing, where twin-screw extruders are used to prepare polymer blends, compounds or composites. The goal of the TSCP is to define the configuration of a screw from a given set of screw elements. The TSCP can be seen as a sequencing problem as the order of the screw elements on the screw axis has to be defined. It is also inherently a multi-objective problem since processing has to optimize various conflicting parameters related to the degree of mixing, shear rate, or mechanical energy input among others. In this article, we develop hybrid algorithms to tackle the bi-objective TSCP. The hybrid algorithms combine different local search procedures, including Pareto local search and two phase local search algorithms, with two different population-based algorithms, namely a multi-objective evolutionary algorithm and a multi-objective ant colony optimization algorithm. The experimental evaluation of these approaches shows that the best hybrid designs, combining Pareto local search with a multi-objective ant colony optimization approach, outperform the best algorithms that have been previously proposed for the TSCP.  相似文献   

3.
A multiobjective variable neighborhood descent (VND) based heuristic is developed to solve a bicriteria parallel machine scheduling problem. The problem considers two objectives, one related to the makespan and the other to the flow time, where the setup time depends on the sequence, and the machines are identical. The heuristic has a set of neighborhood structures based on swap, remove, and insertion moves. We propose changing the local search inside the VND to a sequential search through the neighborhoods to obtain nondominated points for the Pareto‐front quickly. In the numerical tests, we consider a single‐objective version of the heuristic, comparing the results on 510 benchmark instances to show that it is quite effective. Moreover, new instances are generated in accordance with the literature for the bicriteria problem, showing the ability of the proposed heuristic to return an efficient set of nondominate solutions compared with the well‐known nondominated sorting genetic algorithm II.  相似文献   

4.
针对双目标旅行商问题提出了基于Pareto概念的最大最小蚂蚁算法(P--MMAS). 通过重新设计状态转移策略、信息素更新策略及局部搜索策略, 同时引入基于自适应网格的多样性保持策略与信息素平滑机制, 使算法能够快速搜索到在目标空间上均匀分布的近似Pareto前端. 通过在6个标准测试函数上的实验及在热轧批量计划优化中的应用, 表明P--MMAS具有良好的优化性能及实用性.  相似文献   

5.
Supply chain formation is the process by which a set of producers within a network determine the subset of these producers able to form a chain to supply goods to one or more consumers at the lowest cost. This problem has been tackled in a number of ways, including auctions, negotiations, and argumentation‐based approaches. In this paper we show how this problem can be cast as an optimization of a pairwise cost function. Optimizing this class of energy functions is NP‐hard but efficient approximations to the global minimum can be obtained using loopy belief propagation (LBP). Here we detail a max‐sum LBP‐based approach to the supply chain formation problem, involving decentralized message‐passing between supply chain participants. Our approach is evaluated against a well‐known decentralized double‐auction method and an optimal centralized technique, showing several improvements on the auction method: it obtains better solutions for most network instances which allow for competitive equilibrium (Competitive equilibrium in Walsh and Wellman is a set of producer costs which permits a Pareto optimal state in which agents in the allocation receive non‐negative surplus and agents not in the allocation would acquire non‐positive surplus by participating in the supply chain) while also optimally solving problems where no competitive equilibrium exists, for which the double‐auction method frequently produces inefficient solutions.  相似文献   

6.
研究一组多帧任务在异构多核处理平台上的分配,使得所有任务得以完成并耗费更少的时间。建立了带约束条件的异构多核周期多帧任务模型,运用蚁群算法来解决任务分配优化问题。其中结合了遗传算法中的复制、交叉、变异等遗传因子,以提高算法的收敛速度和全局搜索能力;改进了信息素的更新方式,以使算法在执行过程中可以根据收敛及进展情况动态地调整信息素残留程度,加快寻找最优解的能力;此外还引入了一种确定性搜索方法,以加快启发式搜索的收敛速度。实验证明,使用改进后的蚁群算法在解决异构多核平台上的多帧任务分配问题时,可以有效且快速地求得问题的最优解或近似最优解,并且拥有更低的时间复杂度。  相似文献   

7.
Feature selection for transient classification is the problem of choosing among several monitored parameters (i.e., the features) to be used for efficiently recognizing the developing transient patterns. It is a critical issue for the application of “on condition” diagnostic techniques in complex systems, such as the nuclear power plants, where hundreds of parameters are measured. Indeed, irrelevant and noisy features have been shown to unnecessarily increase the complexity of the classification problem and degrade the diagnostic performance. In this paper, the problem of selecting the features to be used for efficient transient classification is tackled by means of multiobjective genetic algorithms. The approach leads to the identification of a family of equivalently optimal subsets of features, in the Pareto sense. However, difficulties in the convergence of the standard Pareto‐based multiobjective genetic algorithm search in large feature spaces may arise in terms of representativeness of the identified Pareto front whose elements may turn out to be unevenly distributed in the objective functions space, thus not providing a full picture of the potential Pareto‐optimal solutions. To overcome this problem, a niched Pareto genetic algorithm is embraced in this work. The performance of the feature subsets examined during the search is evaluated in terms of two optimization objectives: the classification accuracy of a Fuzzy K‐Nearest Neighbors classifier and the number of features in the subsets. During the genetic search, the algorithm applies a controlled “niching pressure” to spread out the population in the search space so that convergence is shared on different niches of the Pareto front, which is thus evenly covered. The method is tested on a diagnostic problem characterized by a very large number of process features available for the classification of simulated transients in the feedwater system of a boiling water reactor. The dynamics of the transient signals is captured by wavelet decomposition, which actually increases the complexity of the search for the optimal feature subsets by triplicating the number of features to be considered. © 2008 Wiley Periodicals, Inc.  相似文献   

8.
This paper deals with a reliability optimization problem for a series system with multiple-choice and budget constraints. The objective is to choose one technology for each subsystem in order to maximize the reliability of the whole system subject to the available budget. This problem is NP-hard and could be formulated as a binary integer programming problem with a nonlinear objective function. In this paper, an efficient ant colony optimization (ACO) approach is developed for the problem. In the approach, a solution is generated by an ant based on both pheromone trails modified by previous ants and heuristic information considered as a fuzzy set. Constructed solutions are not guaranteed to be feasible; consequently, applying an appropriate procedure, an infeasible solution is replaced by a feasible one. Then, feasible solutions are improved by a local search. The proposed approach is compared with the existing metaheuristic available in the literature. Computational results demonstrate that the approach serves to be a better performance for large problems.  相似文献   

9.
基于改进型蚁群算法的MFJSSP研究*   总被引:2,自引:0,他引:2  
为了对MFJSSP进行优化,给出了改进的基于蚁群算法的MFJSSP解决方法。改进后的算法根据工件数量确定子集数量。给出了可选工作集的构建方法及在寻优过程中的邻域搜索策略,并对蚁群算法的参数选择问题进行了讨论。完成了MFJSSP中蚁群算法的改进,并将改进后的蚁群算法应用于解决4×5问题和8×8问题,取得了较理想结果。实验结果证明所提出的算法在解决MFJSSP上是一种可行、有效的解决方法。  相似文献   

10.
In the context of object-oriented software, a common problem is the determination of test orders for the integration test of classes, known as the class integration and test order (CITO) problem. The existing approaches, based on graphs, usually generate solutions that are sub-optimal, and do not consider the different factors and measures that can affect the construction of stubs. To overcome this limitation, solutions based on genetic algorithms (GA) have presented promising results. However, the determination of a cost function, which is able to generate the best solution, is not always a trivial task, mainly for complex systems. Therefore, to better represent the CITO problem, we introduce, in this paper, a multi-objective optimization approach, to generate a set of good solutions that achieve a balanced compromise between the different measures (objectives). Three different multi-objective optimization algorithms (MOA) were implemented: Pareto ant colony, multi-objective Tabu search and non-dominated sorting GA. The approach is applied to real programs and the obtained results allow comparison with the simple GA approach and evaluation of the different MOA.  相似文献   

11.
卫星数传调度问题具有任务多、资源少、调度约束复杂等特点,为满足多目标优化调度的理论和现实需要,提出了多目标卫星数传调度蚁群优化算法。算法建立了基于任务调度关系的解构造图,提出了用于可行解构造的自适应伪随机概率决策模型,以及基于Pareto解偏离度的全局信息素更新策略。仿真结果表明,算法具有较好的Pareto前沿收敛性,各优化目标都能得到较好的指标评价值,所获得的Pareto解集规模适度,Pareto解的多样性、分布均匀性和散布范围都较好。  相似文献   

12.
This work presents a new approach for interval-based uncertainty analysis. The proposed approach integrates a local search strategy as the worst-case-scenario technique of anti-optimization with a constrained multi-objective genetic algorithm. Anti-optimization is a term for an approach to safety factors in engineering structures which is described as pessimistic and searching for least favorable responses, in combination with optimization techniques but in contrast to probabilistic approaches. The algorithm is applied and evaluated to be efficient and effective in producing good results via target matching problems: a simulated topology and shape optimization problem where a ‘target’ geometry set is predefined as the Pareto optimal solution and a constrained multiobjective optimization problem formulated such that the design solutions will evolve and converge towards the target geometry set.  相似文献   

13.
Cost‐efficient multi‐objective design optimization of antennas is presented. The framework exploits auxiliary data‐driven surrogates, a multi‐objective evolutionary algorithm for initial Pareto front identification, response correction techniques for design refinement, as well as generalized domain segmentation. The purpose of this last mechanism is to reduce the volume of the design space region that needs to be sampled in order to construct the surrogate model, and, consequently, limit the number of training data points required. The recently introduced segmentation concept is generalized here to allow for handling an arbitrary number of design objectives. Its operation is illustrated using an ultra‐wideband monopole optimized for best in‐band reflection, minimum gain variability, and minimum size. When compared with conventional surrogate‐based approach, segmentation leads to reduction of the initial Pareto identification cost by over 20%. Numerical results are supported by experimental validation of the selected Pareto‐optimal antenna designs.  相似文献   

14.
Genetic algorithm is a powerful procedure for finding an optimal or near optimal solution for the flowshop scheduling problem. This is a simple and efficient algorithm which is used for both single and multi-objective problems. It can easily be utilized for real life applications. The proposed algorithm makes use of the principle of Pareto solutions. It mines the Pareto archive to extract the most repetitive sequences, and constitutes artificial chromosome for generation of the next population. In order to guide the search direction, this approach coupled with variable neighborhood search. This algorithm is applied on the flowshop scheduling problem for minimizing makespan and total weighted tardiness. For the assessment of the algorithm, its performance is compared with the MOGLS [1]. The results of the experiments allow us to claim that the proposed algorithm has a considerable performance in this problem.  相似文献   

15.
Reconstructive bug modeling is a well‐known approach to student modeling in intelligent tutoring systems, suitable for modeling procedural tasks. Domain knowledge is decomposed into the set of primitive operators and the set of conditions of their applicability. Reconstructive modeling is capable of describing errors that come from irregular application of correct operators. The main obstacle to successfulness of this approach is such decomposition of domain knowledge to primitive operators with a very low level of abstraction so that bugs could never occur within them. The other drawback of this modeling scheme is its efficiency because it is usually done offline, due to vast search spaces involved.

This article reports a novel approach to reconstructive modeling based on machine‐learning techniques for inducing procedures from traces. The approach overcomes the problems of reconstructive modeling by its interactive nature. It allows online model generation by using domain knowledge and knowledge about the student to focus the search on the portion of the problem space the student is likely to traverse while solving the problem. Furthermore, the approach is not only incremental, but also truly interactive because it involves the student in explicit dialogs about his or her goals. In such a way, it is possible to determine whether the student knows the operator he or she is trying to apply. Pedagogical actions and the student model are generated interchangeably, thus allowing for dynamic adaptation of instruction, problem generation, and immediate feedback on student's errors. The approach presented is examined in the context of the symbolic integration tutoring system (SINT), an intelligent tutoring system (ITS) for the domain of symbolic integration.  相似文献   

16.
为了有效求解多目标优化问题,找到分布宽广、均匀的Pareto解集,提出了一个基于空间网格划分的进化算法。将目标空间网格化,利用网格的位置,删除大量被支配个体。在杂交算子中利用了单个目标最优的个体信息,以增加非劣解的宽广性。利用一种新设计的基于最大距离排序的方法删除非劣解集中多余个体。数值实验表明提出的算法是可行有效的。  相似文献   

17.
Multiobjective optimization (MO) allows for obtaining comprehensive information about possible design trade‐offs of a given antenna structure. Yet, executing MO using the most popular class of techniques, population‐based metaheuristics, may be computationally prohibitive when full‐wave EM analysis is utilized for antenna evaluation. In this work, a low‐cost and fully deterministic MO methodology is introduced. The proposed generalized Pareto ranking bisection algorithm permits identifying a set of Pareto optimal sets of parameters representing the best trade‐offs between considered objectives. The subsequent designs are found by iterative partitioning of the intervals connecting previously obtained designs and executing Pareto‐ranking‐based poll search. The initial approximation of the Pareto front found using the bisection procedure is subsequently refined to the level of the high‐fidelity EM model of the antenna at hand using local optimization. The proposed framework overcomes a serious limitation of the original, recently reported, bisection algorithm, which was only capable of considering two objectives. The generalized version proposed here allows for handling any number of design goals. An improved poll search procedure has also been developed and incorporated. Our algorithm has been demonstrated using two examples of UWB monopole antennas with four figures of interest taken into account: structure size, reflection response, total efficiency, and gain variability.  相似文献   

18.
The set covering problem (SCP) is a well known NP-hard problem with many practical applications. In this research, a new approach based on ant colony optimization (ACO) is proposed to solve the SCP. The main differences between it and the existing ACO-based approaches lie in three aspects. First, it adopts a novel method, called single-row-oriented method, to construct solutions. When choosing a new column, it first randomly selects an uncovered row and only considers the columns covering this row, rather than all the unselected columns as candidate solution components. Second, a kind of dynamic heuristic information is used in this approach. It takes into account Lagrangian dual information associated with currently uncovered rows. Finally, a simple local search procedure is developed to improve solutions constructed by ants while keeping their feasibility. The proposed algorithm has been tested on a number of benchmark instances. Computational results show that it is able to produce competitive solutions in comparison with other metaheuristics.  相似文献   

19.
Algorithms for clustering Web search results have to be efficient and robust. Furthermore they must be able to cluster a data set without using any kind of a priori information, such as the required number of clusters. Clustering algorithms inspired by the behavior of real ants generally meet these requirements. In this article we propose a novel approach to ant‐based clustering, based on fuzzy logic. We show that it improves existing approaches and illustrates how our algorithm can be applied to the problem of Web search results clustering. © 2007 Wiley Periodicals, Inc. Int J Int Syst 22: 455–474, 2007.  相似文献   

20.
In this paper, a new design method for robust pole assignment based on Pareto‐optimal solutions for an uncertain plant is proposed. The proposed design method is defined as a two‐objective optimization problem in which optimization of the settling time and damping ratio is translated into a pole assignment problem. The uncertainties of the plant are represented as a polytope of polynomials, and the design cost is reduced by using the edge theorem. The genetic algorithm is applied to optimize this problem because of its multiple search property. In order to demonstrate the effectiveness of the proposed design method, we applied the proposed design method to a magnetic levitation system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号