首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 95 毫秒
1.
In this paper, failure analysis was carried out based on the available documents, metallographic studies and corrosion behavior of the welded joint pipe sample made of AISI 1518 low carbon steel. Nondestructive evaluations including penetration test (PT) and radiographic test (RT) were performed on the as-received pipeline and results indicated the presence of micro- and macro-cracks. Optical microscopic images and scanning electron microscopy (SEM) micrographs revealed various microstructures in the base metal (BM), heat affected zone (HAZ) and weld metal (WM). The microstructural variations may result in galvanic feature and lead to failure and rupture of the weld joint during the service. Microhardness measurements showed that hardness value was about 260 HV in the WM, while it declined in the HAZ and BM. Qualitative chemical analyses such as X-ray diffraction pattern (XRD) and SEM equipped with energy dispersive spectroscopy (EDS) confirmed the presence of corrosive media during weld joint rupture. Additionally, SEM and optical investigations indicated that micro-cracks were formed in HAZ due to residual stress as a consequence of improper welding condition. Surface fracture studies showed that the crack initiation, crack growth and finally crack propagation took place in the WM/HAZ interface. Electrochemical studies were conducted on the BM, HAZ and WM to investigate corrosion behavior of the failed joint sample. Finally, a proper corrosion mechanism is proposed based on the failure analyses and electrochemical studies.  相似文献   

2.
Abstract— Analytical procedures based on low cycle fatigue theory are used to estimate the fatigue crack initiation life (Ni) for a cruciform welded joint in mild steel under constant amplitude tensile cyclic loading; the fatigue crack initiating at the weld toe. Effects due to welding such as residual stresses, geometrical variability and changes in material properties are handled. It is shown that for high mean stresses the discrepancies observed between the N i estimates provided by commonly used analytical procedures exceed an order of magnitude. For the base metal (BM) the discrepancies become negligible if cyclic relaxation of notch mean stress is taken into consideration. The differences betwen the N i estimates for heat affected zone (HAZ) material (where fatigue cracks at the weld toe usually initiate) and for BM are quantified. The applicability of HAZ material properties, estimated from hardness, to N i prediction is evaluated.  相似文献   

3.
杨韬  刘征雨  赵健  车东  吴志刚 《材料保护》2019,52(1):44-46,77
为研究X80管线钢焊接接头不同部位在碱性土壤溶液中的耐腐蚀性,利用极化曲线、电化学阻抗(EIS)法分别研究了X80管线钢基体(BM)、热影响区(HAZ)和焊缝(WM)的耐蚀性能,并利用XRD分别测量了其晶粒尺寸。结果表明:BM的腐蚀电位最大,腐蚀电流密度最小,即耐腐蚀性最好。与BM相比,HAZ和WM的耐腐蚀性依次降低;晶粒尺寸按BM相似文献   

4.
Fatigue crack propagation (FCP) under constant and variable amplitude loading in base metal (BM), weld metal (WM) and heat affected zone (HAZ) of longitudinal welded joints of an API X‐70 pipeline steel was investigated. Constant amplitude loading tests were performed at R = 0.1 and 0.5, whereas for variable amplitude testing single peak tensile overloads (OLs) alternating between 75 and 100% of maximum load were applied at 2.5 mm intervals in crack growth. Results of SE(B) specimens tested under constant and variable amplitude loading revealed that BM, WM and HAZ regions subjected to R = 0.5 and low ΔK‐values presented the highest crack growth rates. At higher ΔK values FCP rates in all the studied regions were similar and the R effect on FCP rate was no more observed. Crack growth retardation due to OLs was observed at the three studied regions, showing a decrease on the FCP delay with a decreasing on ΔK.  相似文献   

5.
Tensile and fatigue behavior of a 6N01 aluminum alloy friction stir welded (FSW) joint was studied. The tensile and fatigue tests were carried out for the large plate and small round bar specimens. The small round-bar specimens extracted from base material (BM), heat affected zone (HAZ) and stir zone (SZ). The HAZ exhibited the lowest hardness. The higher tensile and fatigue strengths of SZ were mainly due to fine and homogeneous grains and significant cyclic hardening. Fatigue failure of the large plate specimen including the whole FSW joint part occurred at the lowest hardness location in the HAZ.  相似文献   

6.
对6005A-T6铝合金挤压型材进行焊速为1000 mm/min的搅拌摩擦高焊速焊接,研究了对接面机械打磨对接头组织和力学性能的影响.结果 表明,与生产中常用的焊前打磨处理相比,尽管对接面未机械打磨的接头焊核区的"S"线更明显,但是两种接头的硬度分布和拉伸性能相当,拉伸时都在最低硬度区即热影响区断裂.高周疲劳实验结果表...  相似文献   

7.
It is a traditional that the fatigue crack growth behavior is sensitive to microstructure in threshold regime, while it is sensitive to R‐ratio in Paris regime. Fatigue test is carried out for welded joints of a Q345 steel where the compact tension specimens with 3.8 and 12.5 mm thickness are used, and comparisons of fatigue crack growth behavior between base metal and a few different locations in the welded joint are considered in Paris regime. Welding residual stresses are removed by heat treatment to focus the study on the microstructural effect. It is shown that fatigue crack growth rate (FCGR) in the base metal is not sensitive to R‐ratio, but the FCGR increases in the overheated zone, the fusion zone and the weld metal zone with R‐ratio increasing. To the low R‐ratio, FCGR in the three zones is smaller than that in the base metal, but they approximate the same with base metal under the high R‐ratio. The mechanism of fatigue crack growth is analyzed through crack path in microstructures and SEM fractograph. The coarse‐grained ferrite in the base metal is of benefit to relaxation of the average stress at the crack tip, and the fatigue crack growth predicts branching and deflection within above different locations in the welded joint. These tortuous crack paths with crack branching and deflection will promote crack closure as well as crack‐tip stress shielding and then resulted in higher crack growth resistance.  相似文献   

8.
The effects of various surface treatment techniques on the fatigue crack growth performance of friction stir welded 2195 aluminum alloy were investigated. The objective was to reduce fatigue crack growth rates and enhance the fatigue life of welded joints. The crack growth rates were assessed and characterized for different peening conditions at a stress ratio (R) of 0.1, and 0.7. The surface and through-thickness residual stress distribution were also investigated and presented for the various regions in the weld. Tensile residual stresses introduced during the welding process were found to become significantly compressive, particularly after laser peening. The effect of the compressive stresses was deemed responsible for increasing the resistance to fatigue crack growth of the welds. The results indicate a significant reduction in fatigue crack growth rates using laser peening compared to shot peening and native welded specimens. This reduced fatigue crack growth rate was comparable to the base unwelded material.  相似文献   

9.
In the present test the fatigue crack growth rate in the parent plate, weld and cross-bond regions was measured and the results were correlated with the stress intensity range ΔK and the effective stress intensity range ΔKeff. It is indicated that the welding residual stresses strongly affect the crack growth rate. For the weld metal and cross-bond compact tension specimens in which crack growth is along the weld line the fatigue crack growth rate increases as the crack grows. However, for the T compact tension specimen in which crack growth is perpendicular to the weld line at a constant value of applied ΔK the crack growth rate initially decreases as the crack grows. Particularly, at a low constant value of applied ΔK the crack growth rate obviously decreases and the crack fails to grow after short crack growth. When the crack grows to intersect the welded zone, the fatigue crack growth rate gradually increases as the crack grows further. It is clear that the effect of welding residual stresses on the crack growth rate is related to the position of the crack and its orientation with respect to the weld line. Finally, the models of welding residual stress redistribution in the compact tension specimens with the growing crack and its influence on the fatigue crack closure are discussed. It appears that for a butt-welded joint one of the crack closure mechanisms may be considered by the bend or rotation deformation of crack faces due to the welding residual stress redistribution as the fatigue crack grows in the welded joint.  相似文献   

10.
Microstructure, hardness, tensile and high cycle fatigue (HCF) properties of the welded dissimilar joints of Ti60 and TC17 titanium alloys had been investigated in this study. A significant microstructural change was observed to occur after welding, with rod-like α and β phases in the fusion zone (FZ), equiaxed α phases, fine α laths and β phases in the heat-affected zone (HAZ) of TC17 side and acicular martensite α' phases+“ghost” α phases in the HAZ of Ti60 side. The microhardness across the joints exhibited an inhomogeneous distribution with the highest hardness of ~404 HV in FZ and the lowest hardness of ~304 HV in base material (BM) of Ti60. All the joints tested in tension fractured at BM of Ti60 side. Fatigue limits of the joints at 107 cycles were 425?MPa at room temperature and 380?MPa at 400?°C, respectively. Welding micropores were found to be the main source of fatigue crack initiation.  相似文献   

11.
The purpose of this study was to evaluate microstructural and mechanical change of DP780 steel after tungsten inert gas (TIG) welding and the influence of notch locations on the fatigue crack growth (FCG) behavior. The tempering of martensite in the sub-critical heat affected zone (HAZ) resulted in a lower hardness (~ 220 HV) compared to the base material (~ 270 HV), failure was found to originate in the soft HAZ during tensile test. The fusion zone (FZ) consisted of martensite and some acicular ferrite. The joint showed a superior tensile strength with a joint efficiency of 94.6%. The crack growth path of HAZ gradually deviated towards BM due to the asymmetrical plastic zone at the crack tip. The FCG rate of the crack transverse to the weld was fluctuant. The Paris model can describe the FCG rate of homogeneous material rather well, but it cannot precisely represent the FCG rate of heterogeneous material. The fatigue fracture surface showed that the stable expanding region was mainly characterized by typical fatigue striations in conjunction with secondary cracks; the rapid expanding region contained quasi-cleavage morphology and dimples. However, ductile fracture mechanism predominated with an increasing stress intensity factor range (ΔK). The final unstable failure fractograph was subtotal dimples.  相似文献   

12.
Fatigue crack propagation rates and threshold stress intensity factors were measured for welded joints and base metal by using 200 mm wide centre-cracked specimens. The fatigue crack propagation properties of welded joints were similar in spite of the different zones in which the cracks propagated (ie, in the heat-affected zone and in the weld metal) and the different welding process used (submerged arc welding and gas metal arc welding). They were, however, inferior to those of the base metal. It was revealed by observation of the crack closure that the fatigue cracks were fully open during the whole range of loading, due to the tensile residual stress distribution in the middle part of the welded joints. This observation also explains the lack of a stress ratio effect on the fatigue crack propagation properties of welded joints, and their inferiority to those of the base metal.  相似文献   

13.
The structural application of lightweight magnesium alloys in the automotive industry inevitably involves dissimilar welding with steels and the related durability issues. This study was aimed at evaluating the microstructural change and fatigue resistance of Mg/steel resistance spot welds, in comparison with Mg/Mg welds. The microstructure of Mg/Mg spot welds can be divided into: base metal, heat affected zone and fusion zone (nugget). However, the microstructure of Mg/steel dissimilar spot welds had three different regions along the joined interface: weld brazing, solid-state joining and soldering. The horizontal and vertical Mg hardness profiles of Mg/steel and Mg/Mg welds were similar. Both Mg/steel and Mg/Mg welds were observed to have an equivalent fatigue resistance due to similar crack propagation characteristics and failure mode. Both Mg/steel and Mg/Mg welds failed through thickness in the magnesium sheet under stress-controlled cyclic loading, but fatigue crack initiation of the two types of welds was different. The crack initiation of Mg/Mg welds was occurred due to a combined effect of stress concentration, grain growth in the heat affected zone (HAZ), and the presence of Al-rich phases at HAZ grain boundaries, while the penetration of small amounts of Zn coating into the Mg base metal stemming from the liquid metal induced embrittlement led to crack initiation in the Mg/steel welds.  相似文献   

14.
The present study focuses on the fatigue properties in the weld heat-affected zone (HAZ) of 800 MPa grade high-performance steel, which is commonly used in bridges and buildings. Single- and multi-pass HAZs were simulated by the Gleeble system. Fatigue properties were estimated using a crack propagation test under a 0.3 stress ratio and 0.1 load frequencies. The microstructures and fracture surfaces were analyzed by optical microscopy, scanning electron microscopy, and transmission electron microscopy. The results of the crack propagation test showed that the fatigue crack growth rate of coarse-grained HAZ (CGHAZ) was faster than fine-grained HAZ (FGHAZ), although both regions have identical fully martensite microstructures, because FGHAZ has smaller prior austenite grain and martensite packet sizes, which can act as effective barriers to crack propagation. The fatigue crack growth rate of intercritically reheated CGHAZ (ICCGHAZ) was the fastest among local zones in the HAZ, due to rapid crack initiation and propagation via the massive martensite-austenite (M-A) constituent.  相似文献   

15.
Creep deformation and failure of E911/E911 and P92/P92 similar weld-joints   总被引:1,自引:0,他引:1  
This paper deals with characterisation of microstructure and creep behaviour of similar weld-joints of advanced 9% Cr ferritic steels, namely E911 and P92. The microstructures of the investigated weld-joints exhibit significant variability in different weld-joint regions such as weld metal (WM), heat-affected zone (HAZ), and base metal (BM). The cross-weld creep tests were carried out at 625 °C with initial applied stresses of 100 and 120 MPa. Both weld-joints ruptured by the “type IV cracking failure mode” in their fine-grained heat-affected zones (FG-HAZ). The creep fracture location with the smallest precipitation density corresponds well with its smallest measured cross-weld hardness. The welds of P92 steel exhibit better creep resistance than those of E911 steel. Whereas the microstructure of P92 weld after creep still contains laths, the microstructure of E911 weld is clearly recrystallized. The creep stress exponents are 14.5 and 8 for E911 and P92 weld-joints, respectively. These n-values indicate the “power-law creep” with dislocation-controlled deformation mechanism for both investigated weld-joints.  相似文献   

16.
The objective of this study is determination of the effect of mechanical heterogeneity on ductile crack initiation and propagation in weldments using micromechanical approach. Welded single-edge notched bend (SENB) specimens were experimentally and numerically analysed. Material properties of welded joint zones were estimated using a combined experimental and numerical procedure; strains on a smooth tensile specimen were determined using ARAMIS stereometric measuring system in order to obtain true stress – true strain curves. High-strength low-alloyed steel was used as base metal, in quenched and tempered condition. JR curves and crack growth initiation values of fracture mechanics parameter were experimentally and numerically obtained for specimens with a pre-crack in the heat-affected zone (HAZ) and weld metal (WM). The complete Gurson model (CGM) was used in prediction of JR curves and crack growth initiation. It is shown that the resistance to crack initiation and growth can be predicted using micromechanical analysis, and that the results are significantly affected by mechanical heterogeneity of the weldment.  相似文献   

17.
The present work aims at studying the role of butter layer (BL) in low-cycle fatigue (LCF) behavior of modified 9Cr steel and CrMoV steel dissimilar welded joint. The significant difference of the chemical composition of base metals (BMs) makes it a challenge to achieve sound welded joint. Therefore, buttering was considered to obtain a transition layer between the dissimilar steels. The LCF tests of two kinds of specimens without and with butter layer were performed applying strain-controlled cyclic load with different axial strain amplitudes. The test results indicated that the number of cycles at higher strain amplitudes of welded joint without butter layer was greatly higher than that of the joint with butter layer, while the fatigue lifetime to crack initiation (2Nf) became closer to each other at low and middle strain amplitudes. The failure was in the tempered heat affected zone (HAZ) at the CrMoV side for specimens without BL, while the fracture occurred at the tempered HAZ in the BL for specimens with BL. The microstructure details of BM, BL, HAZ and weld metals (WMs) were revealed by optical microscopy (OM). It was found that the tempered martensite was major microstructure for welded joint and much more carbides were observed in tempered HAZ than other parts due to the repeated tempering. Microhardness test indicated a softest zone existing tempered HAZ of BL and also there was a softer zone in tempered HAZ at the CrMoV side due to repeated tempering during welding and post weld heat treatment (PWHT). And scanning electron microscopy (SEM) was applied to observe the fractography. It was indicated that the fatigue crack initiation occurred from the specimen surface and all specimens were ductile–brittle mixed fractures. It is deemed that the softening behavior in BL caused by twice tempering correspondingly decreased the LCF lifetime at higher strain amplitudes. So suitable welding parameters and heat treatment processes became a key measure to ensure LCF property without losing other properties for welded joint with BL.  相似文献   

18.
The microstructural characteristics, tensile properties and low-cycle fatigue properties of a dual-phase steel (DP780) were investigated following its joining by three methods: laser welding, tungsten inert gas (TIG) welding, and metal active gas (MAG) welding. Through this, it was found that the size of the welded zone increases with greater heat input (MAG > TIG > laser), whereas the hardness of the weld metal (WM) and heat-affected zone (HAZ) increases with cooling rate (laser > TIG > MAG). Consequently, laser- and TIG-welded steels exhibit higher yield strength than the base metal due to a substantially harder WM. In contrast, the strength of MAG-welded steel is reduced by a broad and soft WM and HAZ. The fatigue life of laser-and TIG-welded steel was similar, with both being greater than that of MAG-welded steel; however, the fatigue resistance of all welds was inferior to that of the non-welded base metal. Finally, crack initiation sites were found to differ depending on the microstructural characteristics of the welded zone, as well as the tensile and cyclic loading.  相似文献   

19.
《Materials Letters》2007,61(11-12):2343-2346
316L stainless steel (SS) is one of the most consumable materials in orthopedic implants. Certain types of orthopedic implants such as mono-bloc hip stems are often made of two elements welded together. In this study, effect of TIG welding on corrosion behavior of 316L stainless steel in physiological solution was investigated. In this method, filler metal wasn't used due to the small thickness of samples and it was welded to lap form. Corrosion behavior in physiological solution at 37 °C was investigated with potentiodynamic polarization curves. Microstructure of base metal (BM) and weld metal (WM) was studied with scanning electronic microscopy (SEM). The corrosion behavior of weld metal, base metal and couple (BM and WM together) was compared together. For detecting microstructure and phases in BM and WM, X-ray diffraction analysis was done. Finally, post-weld heat treatment (PWHT) was performed on as-welded samples. Results indicated that corrosion behavior of WM was better than the BM. This phenomenon was attributed to secondary phases that were present in the BM. Secondary phases in the weld metal are dissolved when the base metal is melting due to the welding process. Based on the results of electrochemical analysis, it was determined that the corrosion rate of a couple was more than of other parts. Heat affected zone (HAZ) is responsible for this phenomenon. The adjacent zones of the weld metal are classically less corrosion resistant, thereby being attacked preferentially when the steel is exposed to corrosive environments. PWHT decreased the corrosion rate of the couple.  相似文献   

20.
The local approach method is used to calculate the fatigue crack initiation/early crack growth lives (Ni) in high strength structural steel weldments. Weld-toe geometries, welding residual stresses and HAZ (heat affected zone) cyclic mechanical properties are taken into account in the Ni estimation procedure. Fatigue crack initiation lives are calculated from either a Basquin type or a Manson-Collin type equation. The local (HAZ) stress and strain amplitudes and the local mean stress are determined from an analysis based on the Neuber rule and the Molski-Glinka energy approach. The accuracy of the different methods is evaluated and discussed. Finally the previous methods are used with HAZ cyclic mechanical properties estimated from hardness measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号