首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Niobium‐doped Titanium dioxide (Nb:TiO2) transparent films were successfully deposited on glass substrates using a non‐aqueous sol‐gel spin coating technique. The effect of Nb concentration on the structural and photocatalytic properties of Nb:TiO2 films was studied using X‐ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and UV visible spectroscopy. The films with 12 at.% (atomic percent) Nb doped TiO2 showed excellent photocatalytic activity through 97.3% degradation of methylene blue (MB) after 2 h of UV irradiation.  相似文献   

2.
Silicates doped with catalytic species have only been slowly adopted by the fine chemicals and pharmaceutical industries, in spite of their remarkable and unique properties such as pronounced physical and chemical stability; high (enantio)selective activity and ease of materials production and application. This is now changing thanks to stricter safety regulations and to concomitant success of the first commercial catalysts. In this account we tell the story of these materials and identify some deficiencies in the innovation process that may serve as lesson in guiding the future management of innovation in these relevant industries.  相似文献   

3.
We report the electrical transport properties of silver‐, potassium‐, and magnesium‐doped hydroxyapatites (HAs). While Ag+ or K+ doping to HA enhances the conductivity, Mg+2 doping lowers the conductivity when compared with undoped HA. The mechanism behind the observed differences in ionic conductivity has been discussed using the analysis of high‐temperature frequency‐dependent conductivity data, Cole–Cole plots of impedance data as well as on the basis of the frequency dependence of the imaginary part (M″) of the complex electric modulus. The fmax of modulus M″ decreased in silver‐ and potassium‐doped samples in comparison with the undoped HA.  相似文献   

4.
Titanium oxide (TiO2) nanoparticle coatings were deposited on the 316L stainless steel substrates by sol‐gel method. The morphology, structure, and corrosion resistance of the coating were analyzed using SEM, AFM, X‐ray diffraction, and electrochemical techniques. The deposition parameters employed to realize the anticorrosion performance including calcinations temperature, polyethylene glycol (PEG) content, pH value, and number of dipping cycles were investigated. Taguchi statistical experiments were carried out to determine the influence of the deposition variables on anticorrosion properties and optimal conditions. The results indicated that a higher anticorrosion performance of TiO2 films could be achieved using 1 g of PEG in a sol with pH in range of 7–9, six cycles of dipping, and calcination temperature at 400°C. The Tafel polarization measurements indicate that icorr value decreases about 200 times and the Rcorr value increases around 57 times compared with uncoated 316L stainless steel.  相似文献   

5.
Recent sol‐gel techniques enable bioactive composite layers to be prepared by the embedding of bioactive compounds, biomolecules (BMs) and cellular systems within inorganic layers. These novel bioactive layers offer interesting new applications, e.g. biocompatible coatings on implants and medical products, the preparation of biosensors and biocatalysts, and coatings that can release biocides in a controlled manner.  相似文献   

6.
A convenient water‐based sol‐gel technique was used to prepare a highly efficient lithium orthosilicate‐based sorbent (Li4SiO4‐G) for CO2 capture at high temperature. The Li4SiO4‐G sorbent was systematically studied and compared with the Li4SiO4‐S sorbent prepared by solid‐state reaction. Both sorbents were characterized by X‐ray diffraction, scanning electron microscopy, nitrogen adsorption, and thermogravimetry. The CO2 sorption stability was investigated in a dual fixed‐bed reactor. Li4SiO4‐G exhibited a special Li4SiO4 structure with smaller crystalline nanoparticles, larger surface area, and higher CO2 adsorption properties as compared with Li4SiO4‐S. The Li4SiO4‐G sorbent also maintained higher capacities during multiple cycles.  相似文献   

7.
Organic/inorganic hybrid nanocomposite coatings were prepared through a dual‐cure process involving the cationic photopolymerization of a vinyl ether based system and the condensation of an alkoxysilane inorganic precursor. All formulations produced transparent cured films characterized by high gel contents. An increase in glass transition temperature and an increase in storage modulus above Tg in the rubbery plateau were observed with increasing TEOS content in the photocurable formulation. TEM micrographs showed that the organic and inorganic phases were strictly interconnected with no macroscopic phase separation; the sizes of the silica domains in the polymeric matrix were 3–5 nm.

  相似文献   


8.
Polycrystalline BiFeO3 was synthesized at 400°C–700°C. Distinctive difference in the magnetic and dielectric properties was observed between the samples sintered at 400°C–500°C and those sintered at 600°C–700°C. The former showed ferromagnetic‐like hysteresis loops with an increased magnetization of 0.54 emu/g, whereas the later showed linear loops with a small magnetization of 0.065 emu/g. Although X‐ray did not identify any secondary phase, the suspected trace of some magnetic phase (Fe3O4) in the samples was conceded by the occurrence of an exchange bias. The difference in dielectric response between the two groups of samples arose mainly from a different conductivity at the grain boundaries. Owing to Fe3O4 coating at grain surface, the 400°C–500°C sintered samples behaved like a single parallel R–C circuit, whereas the dielectric response of the samples sintered at 600°C–700°C was represented by a series of two parallel R‐C units for grains and grain boundaries, respectively. Two dielectric relaxation peaks observed at <700 Hz and 0.3~6 MHz in the high‐temperature sintered samples were attributed to the Maxwell–Wagner relaxation and electron hopping, respectively.  相似文献   

9.
10.
Organically modified silicas doped with TEMPO prepared via the sol‐gel method are highly recyclable catalysts of the selective Montanari‐Anelli oxidation of 1‐nonanol; They show a notable ”positive feedback” effect of matrix alkylation on the catalyst activity which is typical of doped sol‐gel materials and markedly differentiates the behaviour of these materials from that of analogous silica‐supported TEMPO.  相似文献   

11.
The completion of the polycondensation of sol‐gel derived organic‐inorganic hybrid silica by heat treatment was studied for powder samples prepared from vinyltrimethoxysilane and vinyltriethoxysilane. The appropriate temperature for the completion of the prepared submicron powdery samples from both starting compounds was determined through thermogravimetric analysis. The completion or incompletion of the polycondensation was elucidated by means of several instrumental methods in addition to a light scattering test. The lowest heat treatment conditions for the particles from vinyltrimethoxysilane and vinyltriethoxysilane are 170 °C and 180 °C, respectively, for 24 h. The morphologies of the heat treated samples were found to be slightly different depending on the starting material used.  相似文献   

12.
13.
Selenium‐doped hydroxyapatite (HA) was biomimetically coated on Ti6Al4V plates with the aim of combining the anticancer and antibacterial properties of selenium with the biocompatibility and bioactivity of HA. For the coating process, the composition of 1.5 × SBF (solution with ion concentrations at 1.5 times that of simulated body fluid, SBF) was modified to include 0.15 mM selenate (SeO42?) ion. The selenium‐doped HA coating was characterized by several methods, such as scanning electron microscopy, X‐ray diffraction, and Fourier transform infrared spectroscopy. The cytotoxicity of selenium on osteoblast and osteosarcoma cells was determined. The coating was shown to inhibit the growth of Staphylococcus epidermidis.  相似文献   

14.
Using the sol‐gel route Nd3+‐doped oxyfluoride glass‐ceramics were prepared. LiYF4 and YF3 crystals were deposited in the glass‐ceramics and their size, distribution, and amount ratio were varied by changing the compositions and heating temperatures. The incorporation of Nd3+ ions into both the fluoride crystals was confirmed by the high‐resolution elemental mapping of the glass‐ceramics. The incorporated Nd3+ ions showed up and down conversion photoluminescence whose properties were obviously different among the samples. The preliminary site analysis for Nd3+ ions was carried out using a unique approach associated with the Prony series approximation. Finally, the approach was found to be useful for the analysis of materials that are structurally complicating.  相似文献   

15.
In this work, a multi-analytical approach involving nitrogen porosimetry, small angle neutron and X-ray scattering, Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopies, X-ray diffraction, thermal analysis and electron microscopy was applied to organically modified silica-based xerogels obtained through the sol–gel process. Starting from a tetraethoxysilane (TEOS) precursor, methyltriethoxysilane (MTES) was added to the reaction mixture at two different pH values (2.0 and 4.5) producing hybrid xerogels with different TEOS/MTES molar ratios. Significant differences in the structure were revealed in terms of the chemical composition of the silica network, hydrophilic/hydrophobic profile, particle dimension, pore shape/size and surface characteristics. The combined use of structural characterization methods allowed us to reveal a relation between the cavity dimensions, the synthesis pH value and the grade of methyl substitution. The effect of the structural properties on the controlled Captopril release efficiency has also been tested. This knowledge facilitates tailoring the pore network for specific usage in biological/medical applications. Knowledge on structural aspects, as reported in this work, represents a key starting point for the production of high-performance silica-based hybrid materials showing enhanced efficacy compared to bare silica prepared using only TEOS.  相似文献   

16.
Using a polymeric precursor synthesized from a mixture of cyclopentasilane, white phosphorus, and 1‐hexyne, we deposited phosphorus‐doped silicon‐rich amorphous silicon carbide (a‐SiC) films via a solution‐based process. Unlike conventional polymeric precursors, this polymer requires neither catalysts nor oxidation for its synthesis and cross‐linkage. Therefore, the polymeric precursor is sufficiently pure for effective doping and fabricating semiconducting a‐SiC. This study presents the results of a detailed study of the effect of carbon and phosphorus concentrations on the structural, optical, and electrical properties of a‐SiC films. The lowest activation energy for these films is 0.39 eV, which leads to an optical gap and a dark conductivity of 2.1 eV and 109 Ω cm, respectively. Moreover, these films satisfy the Meyer–Neldel rule for thermally activated conductivity, which indicates that white‐phosphorus doping of solution‐processed a‐SiC produces films with the same characteristics as phosphine‐doped vacuum‐processed a‐SiC.  相似文献   

17.
Palladium doped ZnO was prepared by the sol‐gel and dip‐coating techniques, starting with zinc acetate and palladium chloride as precursors, followed by its hydrolysis in methanol. Acetic acid was incorporated to adjust pH, as well as acetylacetonate and monoehtylamine as stabilizers. The sol was later dipped 3 times in silica substrates. Structural, morphological, and antimicrobial properties of the films were investigated for three palladium contents (1.0, 2.5, and 5 mol %). X‐ray diffraction (XRD) showed that the films have a hexagonal structure after been annealed at 500°C. X‐ray photoelectron Spectroscope (XPS) showed that Pd is present in its oxidized form. Atomic force microscopy (AFM) from films showed a crack free and smooth surface (Ra= 18 nm), composed of cross‐linked particles. The synthesized films presented antibacterial activity against Escherichia coli and Pseudomona aeruginosa. It was observed that the higher Pd content (5 mol %) presents the higher antimicrobial ratio, 64.07%, for the E. coli, whereas for the P. aeruginosa, the lower Pd content (1 mol %), shows the higher antimicrobial ratio, 76.43%.  相似文献   

18.
A deposition mechanism by air‐spray technique is carried out for depositing silica‐based thin films obtained by the sol–gel process. The air‐spray deposition is very useful to coat large and complex surfaces with different morphologies and roughnesses which favors the technology scale‐up, contrary to the most used deposition methods in the sol–gel process (dip and spin coating). To establish the adequate conditions of these techniques, a complete study of the sol properties (rheology, FT‐IR, roughness, thickness) is attempted, which has allowed determining the parameters for the effective air‐spray deposition of homogeneous thin films. By means of an experimental design, it has been possible to validate the selected parameters. Finally, a scheme of an effective spray deposition model is proposed for a better understanding of the deposition mechanisms.  相似文献   

19.
In this paper, the preparation of polymer/silica nanocomposite particles in a convenient one‐step process, via in situ miniemulsion polymerization and the sol‐gel technique, is described. The products were characterized using differential scanning calorimetry, transmission electron microscopy, and dynamic light scattering. Moreover, the effects of various reaction parameters, including the content of silica and the concentrations of sodium dodecyl sulfate and potassium persulfate, on the particle size and size distribution were also investigated. It is shown that polymer/silica hybrid nanocomposite particles were successfully synthesized in one step by this novel technique.

  相似文献   


20.

Pure and Al-doped Zin Oxide ZnO (AZO) thin films with different aluminum (Al) concentrations (0.5, 1, 2, and 3 at.%) were prepared on glass substrates by a dip-coating technique using different Zn and Al precursors. The structural, morphological, optical and electrical properties of these films were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), Atomic force electron microscopy, ultraviolet–visible spectrophotometry, photoluminescence (PL) spectroscopy and four-point probe technique. XRD results showed that the obtained AZO thin films were polycrystalline with a highly c-axis preferred (002) orientation, and the average crystallites size decreased from 29 to 25 nm with the increase in Al doping concentration. EDS microanalysis confirmed the presence of Zn, O and Al elements in the prepared films as expected. The optical study demonstrated that the ZnO thin film had a good transparency in the visible range with a maximum transmittance of 90% and the band gaps varied from 3.16 to 3.26 eV by Al doping. SEM micrographs showed a wrinkles-like morphology of the thin films that changed in density with the increase of Al concentrations. The PL emission spectra indicated that except the thin film doped with 1 at.%, other films exhibited high emission intensities under an excitation of 325 nm which allows to apply them as downconversion layers for solar cell applications.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号