首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
用ADS进行功率放大器仿真设计   总被引:2,自引:1,他引:1  
主要介绍了工作频率为2.4GHz的A类功放的设计方法和仿真过程,采用负载迁移法使用ADS仿真软件,获得射频功率放大器电路的输入输出最佳匹配阻抗,并对设计电路进行了稳定性分析、线性度分析、电源效率分析及对整个电路进行了优化。仿真设计出一个工作频率2.4GHz、增益9.5dB,1dB压缩点功率34dBm、2次谐波小于-50.8dBc的射频功率放大器。  相似文献   

2.
该文介绍了一款应用于38 GHz的大功率超宽带功率放大器。电路设计中采用了键合线连接裸片与微带电路,并对该部分单独进行电磁场仿真。采用渐变微带线的方法实现了宽带匹配,通过HFSS与ADS的联合仿真优化设计,完成了大功率宽频带的功率放大器设计和仿真过程,仿真结果表明在频率38 GHz范围内增益(8.5±1) dB,1 dB压缩点输出功率为48 dBm最大饱和功率为49.5 dBm。  相似文献   

3.
分析了功率放大器输入输出响应特性与栅极偏置电路时间常数的关系,以及信号通过功率放大器后的矢量幅度误差(EVM)和邻信道功率抑制比(ACPR)。并基于MW4IC2230设计了工作于2 GHz频段,输出33 dBm的TD-SCDMA三载波射频功率放大器,以验证该关系。当动态偏置电路时间常数为1 ms时,功率放大器输出EVM为2.5%,ACPR为?43 dB。根据TD-SCDMA物理信道特点,提出对偏置电路的控制可以比传输信号起始时刻提前,当该提前量为1.5 μs、动态偏置电路时间常数为1 ms时,功率放大器输出EVM为1.8%,ACPR为?45 dB,满足TD-SCDMA系统标准要求。  相似文献   

4.
基于InGaP/GaAs HBT工艺设计了一款工作频段为2.5~2.7 GHz的高效率低谐波失真的功率放大器.该功放通过在输出匹配网络中引入多个LC谐振网络组合有效抑制了在负载处的高次谐波能量,进而提高了效率.仿真结果表明,该功率放大器在4.5 V的供电电压下,可以在2.5~2.7 GHz工作频率范围内实现37.6 dB的高增益输出,饱和输出功率可达32 dBm以及对应大于36%的功率附加效率(PAE),二次和三次谐波都小于-60 dBc.  相似文献   

5.
为了实现准确快速设计宽带匹配网络的目的, 提出了基于人工神经网络设计宽带高效功率放大器的新方法。通过对匹配网络及晶体管阻抗特性的分析,借助人工神经网络对功率放大器的匹配网络进行建模。结合训练模型与优化方法设计宽带匹配网络初值,在指定的频带内满足晶体管最优阻抗随频率变化的曲线。选择商用的氮化镓高电子迁移率晶体管,分别设计了六阶低通网络为输入和输出匹配网络,实现了一款工作在0.2~1.6 GHz的宽带高效率功率放大器。仿真结果表明,在0.2~1.6 GHz(轴比带比约为156%)的带宽范围内,功率放大器达到64.5%~80.5%的漏极效率,输出功率为40.0~41.6 dBm,频带内增益为11.1~12.6 dB。该方法提升了宽带功率放大器匹配网络的设计速度与准确性。  相似文献   

6.
该文设计了一款应用于卫星通信基站的Ku波段高效率功率放大器。设计电路中的有源器件为Triquint 0.25μm GaN HEMT功率管,首先对该功率晶体管等效电路模型进行参数提取,用HFSS软件对无源元件进行电磁场仿真,用Agilent ADS软件对电路有源和无源进行了联合仿真。电路拓扑结构为Doherty结构,其中主放大器和辅助放大器分别设计,再通过Wilkinson功分器两路合成。仿真结果显示,在1414.5 GHz频率下,设计的功率放大器输出功率大于12 W,功率增益大于8 dB,功率附加效率高于45%。  相似文献   

7.
微波功率放大器是发射机的重要组件,它的设计成了微波发射系统的关键.文中使用ADS仿真软件对一款功率放大器进行电路设计和仿真,根据晶体管的小信号S参数和I-V曲线,对功率管的输入、输出阻抗匹配电路及其偏置电路进行优化设计,使其性能达到设计要求.在2~2.5GHz的频段内,对输入功率为0dBm射频信号,使用功放模块可以输出40dBm的射频信号,带内波动≤±1.5dB.  相似文献   

8.
设计了一款用于Ku波段行波管的线性化器,基于模拟预失真技术,90°电桥和两个肖特基二极管,在外加直流馈电的情况下,产生预失真信号,矢量网络分析仪测试结果表明,在工作频率为12.5GHz时,其增益扩展了6dB,相位扩张了40°左右。该线性化器与行波管功率放大器级联,双音测试结果表明,当功放双音饱和输入功率回退3dB、三阶交调指标在工作频率12.25GHz和12.75GHz时,均改善了6dB左右。该线性化器结构简单、成本较低、实用性强。  相似文献   

9.
运用变压器反馈技术,基于65 nm CMOS工艺设计了一款紧凑型宽带低噪声放大器。电路采用两级共源共栅结构,基于变压器的输入匹配网络实现了宽带输入匹配,漏源正反馈提高了电路的增益,漏源负反馈增强了其稳定性,电路总面积仅为0.156 mm2。仿真结果表明,设计的宽带低噪声放大器的最大增益为18.2 dB,3dB带宽为31~45 GHz, 1 dB带宽为32~44 GHz。在36 GHz时,最低噪声系数为4.5 dB,1dB带宽内噪声系数均低于5.2 dB。  相似文献   

10.
伴随着有源相控阵技术的飞速发展,对功率放大器设计提出宽带、小型化、高效率、低成本的要求。通过使用GaN HEMT器件设计一款工作在1~6GHz输出功率为50 W的宽带大功率固态功放模块。经过测试,该功放模块工作带宽超过2个倍频程,在全频段增益满足47±3dB,输入驻波≤1.5,整个功放模块的功耗≤1 800 W,模块效率≥25%。  相似文献   

11.
The operation principle of distributed amplifiers and the impedance characteristic of artificial transmission lines (ATLs) are analyzed, and a distributed power amplifier consisting of three gain cells is designed and fabricated by 0.18μm complementary metal oxide semiconductor (CMOS) technology. The peaking inductor is used to enhance the gain and the reverse isolation of the amplifier in high frequency. The termination loads of ATLs are increased and the values of on-chip inductors are optimized to provide good impedance matching, while improving the output power and efficiency. Measured results show that the amplifier has a 3dB bandwidth of 12GHz (2.5~14.5GHz) and provides an average forward gain of 9.8dB from 3 to 14GHz with a gain flatness of ±1dB. In the desired band, the output power at 1dB gain compression point (P1dB) is from 4.3 to 10.3dBm while the power added efficiency (PAE) is from 1.7% to 6.9%.  相似文献   

12.
A high power density monolithic microwave integrated circuit (MMIC) power amplifier is presented for W band application. The chip is fabricated using the 100 nm GaN high electron mobility transistor (HEMT) technology on a 50 μm SiC substrate. The amplifier is designed for a high gain and high output power with three stage topology and low-loss impedance matching networks designed with high and low characteristic impedance micro-strips and metal-insulator-metal (MIM) capacitors. And quarter-wave micro-strips are employed for the DC bias networks, while the power amplifier is also fully integrated with bias networks on the wafer.Measurement results show that, at the drain bias of 15 V, the amplifier MMIC achieves a typical small signal gain of 20 dB within the frequency range of 88~98 GHz. Moreover, the saturated output power is more than 250 mW at the continuous-wave mode. At 98 GHz, a peak output power of 405 mW has been achieved with an associated power gain of 13 dB and a power-added-efficiency of 14.4%. Thus, this GaN MMIC delivers a corresponding peak power density of 3.4 W/mm at the W band.  相似文献   

13.
X 波段单级氮化镓固态放大器   总被引:2,自引:0,他引:2  
利用自主研制的SiC 衬底的栅宽为2.5mm的AlGaN/GaN HEMT器件,设计完成了单级X波段氮化镓固态放大器模块.模块由AlGaN/GaN HEMT器件、偏置电路和微带匹配电路构成.采用金属腔体和测试夹具,保证在连续波下具有良好的接地和散热性能.利用双偏置电路馈电,并且采用独特的电容电阻网络和栅极串联电阻消除了低频和射频振荡.利用微带短截线完成了器件的输入输出匹配.在 8GHz频率及连续波情况下(直流偏置电压为 Vds= 27V, Vgs= -4.0V),放大器线性增益为 5.6dB,最大效率为30.5%,输出功率最大可达 40.25dBm (10.5W),此时增益压缩为 2dB.在带宽为 500MHz内,输出功率变化为 1dB.  相似文献   

14.
为了满足毫米波雷达或通信系统对更高发射功率的需求,基于65 nm Bulk Si CMOS工艺制程设计了一款Ka频段功率放大器.该功率放大器工作于30~32 GHz,采用了共源共栅差分对结构的两级放大单元,使用中和电容增强电路的稳定性,并以变压器为基础设计实现了片上无源阻抗匹配网络.经过测试,该功率放大器在工作频段内的...  相似文献   

15.
在自偏置A类共源共栅射频功率放大电路拓扑基础上,基于SMIC 0.18 μm CMOS工艺设计了两级自偏置A类射频功率放大器电路.该射频功率放大器电路采用两级共源共栅结构,在共栅MOS管上采用自偏置.采用Cadence公司的SpectreRF工具对电路进行仿真与优化.设计与优化结果表明,在2.4GHz频率下,输出功率为20.3dBm,功率附加效率为49%,功率增益达到32dB.  相似文献   

16.
采用多端口平行微带线输出的功率合成放大器中,信号通道之间的距离可调范围较小,没有充足的空间放置单元放大器芯片及其偏置电路。本文针对这个问题,提出了一种微带平面链式功率分配/合成器结构。在该结构中,单元放大器的位置能够移到电路的侧边,各信号通道之间的距离可以根据需要进行选择。设计制作了一个包含4条支路的平面链式功率分配/合成电路;测试数据表明,其反射损耗在2.0~4.5GHz的频带上小于-13dB,插入损耗小于0.8dB。设计制作了一个包含4个单元放大器的平面链式功率合成放大器,在2.0~4.5GHz频带上,其小信号增益为13~19dB,与对应单元放大器的小信号增益吻合得较好。在3.2GHz时的饱和输出功率为26.4dBm,合成效率为85%。  相似文献   

17.
针对40Gb/s光通信系统对高速芯片的需求,设计出一种微波单片宽带驱动放大器。该放大器基于0.15μm砷化镓赝配高电子迁移率晶体管工艺,可用于驱动铌酸锂调制器。放大器的宽带实现方案选择分布式拓扑结构,增益单元选择带有耦合电容的共源共栅结构。利用ADS仿真软件进行设计仿真,结果显示,所设计的放大器在DC-35GHz的工作带宽内增益响应平坦,电压增益大于10dB,增益平坦度为±0.5dB,具驻波特性良好,其输入、输出反射系数在频带内的典型值均小于-10dB;在1dB压缩点的输出功率为20dBm,故设计方案可行。  相似文献   

18.
该文介绍了基于SMIC 0.18μm CMOS工艺工作于2.4GHz功率放大器的设计方法,并给出了仿真结果.电路采用两级放大的结构,驱动级采用自偏置Cascode结构,为了保证驱动级有足够的线性度,偏置电压采用了自适应结构,使偏置电压随着输入功率的不同而变化,保证了放大器的线性度并提高了功率附加效率,功率级采用共源结构...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号