首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cytogenetic analysis of short-term cultures of five phyllodes tumors of the breast-classified as benign (one tumor), borderline malignant (two tumors removed from the same breast in 1991 and 1993), and malignant (two tumors)--revealed clonal changes with simple structural abnormalities in the benign tumor, the borderline malignant tumors, and one malignant tumor in which benign areas and areas of borderline malignancy were also present. In contrast, the malignant tumor without admixed borderline malignant or benign areas had a complex karyotype. The karyotype of the benign phyllodes tumor was 46,XX,del(12)(p11p12)/46,XX,t(8;18)(p11;p11)/46,XX. The first borderline malignant phyllodes tumor had t(3;20)(p21;q13) as the sole abnormality. When the tumor recurred, this was no longer the only clone detected and the tumor karyotype was now 46,XX,t(3;20)(p21;q13)/46,XX,t(9;10)(p22;q22)/46,XX,t(1;8) (p34;q24)/46,XX,del(11)(q22-23)/46,XX. The malignant/borderline malignant/benign tumor had t(1;6)(p34;p22) as the sole clonal abnormality. Finally, the karyotype of the malignant phyllodes tumor which contained no benign or borderline malignant areas was 42,XX,der(1)t(1;4)(q21;q21),der(3)t(3;17)(q29;q21), -4,i(8)(q10), -10, -13,i(13)(q10),der(14)t(1;14)(q21;p11),der(14)t(4;14) (p12;p11), -17/80-90,idemx2, +del(1)(q12), +i(1)(p10), +dic(5;5)(p14;p14), +i(6)(p10), +del(7)(p11), +dup(7)(q11q36), +i(15)(q10),inc/46,XX. The findings indicate some cytogenetic similarities between benign/borderline malignant phyllodes tumors and fibroadenomas of the breast, presumably reflecting similar pathogenetic mechanisms in the two types of mixed-lineage tumors.  相似文献   

2.
Short-term cultures from 20 pancreatic tumours, three endocrine and 17 exocrine, were cytogenetically analysed. All three endocrine tumours had a normal chromosome complement. Clonal chromosome aberrations were detected in 13 of the 17 exocrine tumours: simple karyotypic changes were found in five carcinomas and numerous numerical and/or structural changes in eight. When the present findings and those previously reported by our group were viewed in conjunction, the most common numerical imbalances among the 22 karyotypically abnormal pancreatic carcinomas thus available for evaluation turned out to be, in order of falling frequency, -18, -Y, +20, +7, +11 and -12. Imbalances brought about by structural changes most frequently affected chromosomes 1 (losses in 1p but especially gains of 1q), 8 (in particular 8q gains but also 8p losses), and 17 (mostly 17q gain but also loss of 17p). Chromosomal bands 1p32, 1q10, 6q21, 7p22, 8p21, 8q11, 14p11, 15q10-11, and 17q11 were the most common breakpoint sites affected by the structural rearrangements. Abnormal karyotypes were detected more frequently in poorly differentiated and anaplastic carcinomas than in moderately and well differentiated tumours.  相似文献   

3.
Tumor specific chromosomal abnormalities have been identified in several histologic subtypes of benign and malignant bone tumors. These anomalies have proven to be useful diagnostically. Characterization of recurrent chromosomal abnormalities also has provided direction for molecular investigations of pathogenetically important genes. Cytogenetic reports of chondroblastoma, a rare benign bone tumor, are few. Cytogenetic analysis of a benign and a malignant chondroblastoma in this study revealed the following abnormal chromosomal complements: 47,XY,+5,t(5;5)(p10;q10) and 45, XY,del(2)(p23),del(3)(q23q27),dup(8)(q12q21.), del(11) (q14q23), -13, add (17) (q25) x 2, respectively. Although a specific chromosomal abnormality has not yet emerged for chondroblastoma, abnormalities of chromosomes 5 and 8 have been reported previously in this neoplasm, suggesting preferential involvement of these two chromosomes.  相似文献   

4.
We performed cytogenetic studies of 36 human epithelial ovarian carcinomas using in situ culture and robotic harvest. We obtained analyzable metaphases of all 36 tumors (100%). One or more chromosomally abnormal clones were observed in 80% of tumors. Common clonal chromosome gains (each occurring in six or more cases) included +1, +2, +3, +6, +7, +9, and +12. Common clonal chromosome losses (occurring in 12 or more cases) included -X, -4, -8, -11, -13, -15, -17, and -22. Common clonal structural abnormalities (occurring in four or more cases) involved regions 1p36, 1q32, 1q42, 3p13-->p26, 3q26-->q29, 7p22, 9q34, 11p13-p15, 17q21-->q23, 19p13.3, and 19q13.3. Trisomy 12 was noted as the sole anomaly in three of five borderline and grade 1 tumors. Two grade 2 tumors contained i(1q), -14, -15 and -22. The results suggest that the pathogenesis of borderline and low-grade tumors may differ from that of higher grade tumors. Two high-grade tumors had an apparent translocation between 17q21 and 19p13.3, two chromosome regions believed to be critical to ovarian carcinogenesis.  相似文献   

5.
We report the use of dual-colour chromosome painting to determine the exact nature of certain chromosome rearrangements observed in the pig (Sus scrofa domestica). The chromosomal abnormalities were detected by GTG- and RBG-banding techniques. The initially proposed interpretations were: (1) rcp(6;13)(p1.5;q4.1); (2) rcp(11;16)(p1.4;q1.4); (3) rcp(6;16)(p1.1;q1.1); (4) rcp(13;17)(q4.1;q1.1); (5) rcp(6;14)(q2.7;q2.1); (6) rcp(3;5)(p1.3;q2.3); (7) rcp(2; 14)(q1.3;q2.7); (8) rcp(15;17)(q1.3;q2.1). Hybridizations were carried out with biotin- and digoxigenin-labelled probes obtained by priming authorizing random mismatches polymerase chain reaction (PARM-PCR) amplification of porcine flow-sorted chromosomes. In some cases, i.e. (1), (4), (5), (6), (7) and (8), the fluorescence in situ hybridization (FISH) results allowed confirmation of the interpretations proposed with classical cytogenetic methods. Chromosome painting proved the reciprocity of the translocation in cases (1), (6) and (8), whereas modifications of the formula were proposed for case (2). Primed in situ DNA labelling (PRINS) experiments have also been carried out in case (3) using a primer specific for the centromeres of acrocentric chromosomes (first experiment) or a primer specific for the centromeres of a subset of meta- and submetacentric chromosomes including chromosome 6 (second experiment). It allowed us to demonstrate that the breakpoints occurred in the centromeric region of chromosome 16 and in the p. arm of chromosome 6, just above the centromere.  相似文献   

6.
7.
Cytogenetic analysis of short-term cultures from 52 colorectal carcinomas revealed a normal karyotype in 13 and clonal chromosome aberrations in 39 tumors. In the abnormal group, 13 tumors had simple numerical changes only, whereas 26 had at least one structural rearrangement with or without concomitant numerical changes. The most common numerical abnormalities were, in order of decreasing frequency, +7, -18, -Y, +8, +13 and -14. The most common structural rearrangements affected, again in order of decreasing frequency, chromosomes 8, 1, 6, 7, 17, 3, 11, 13, 14, 16, 2 and 10. The chromosome bands most frequently involved in the structural changes were 8q10, 17p11, 11q13, 8p11, 6q21, 7p15, 7q36, 12q13, 13q10, and 16q13. The most frequent genomic imbalances brought about by the structural rearrangements were losses from chromosome arms 8p, 1p, 6q, 17p, 7p, and 16q, as well as gains of 7q, 8q, 13q, and 11q. A statistically significant (p < 0.05) correlation between the karyotypic pattern and tumor grade was found, with the poorly differentiated carcinomas generally having more massive chromosomal abnormalities.  相似文献   

8.
Comparative genomic hybridization was performed on 30 primary head and neck squamous cell carcinomas. Fractional or entire DNA loss of chromosome 3p was a basic finding that occurred in 29 cases (97%). Additional DNA underrepresentations were observed in more than 50% of the cases on chromosomes 1p, 4, 5q, 6q, 8p, 9p, 11q, 13q, 18q, and 21q. Deletions on chromosomes 3p, 13q, and 17p were confirmed by loss of heterozygosity analysis. Entire or partial DNA copy number increases were identified for chromosome 3q in 26 cases (87%) with high-level amplifications at 3q24 and 3q27-qter. Overrepresentations were found in decreasing order of frequency at 11q13 (70%), 8q (57%), 19q (50%), 19p (47%), and 17q (47%). The use of comparative genomic hybridization superkaryograms of the group of well-differentiated carcinomas (G1) indicated that the deletions on chromosomes 3p and 9p along with the overrepresentation of 3q are associated with early tumor development. Accordingly, the undifferentiated tumors (G3) were characterized by additional deletions on chromosomes 4q, 8p, 11q, 13q, 18q, and 21q and overrepresentations on 1pter, 11q13, 19, and 22q, suggesting that these changes are preferentially associated with tumor progression.  相似文献   

9.
This review summarizes reports of recurrent DNA sequence copy number amplifications in human neoplasms detected by comparative genomic hybridization. Some of the chromosomal areas with recurrent DNA copy number amplifications (amplicons) of 1p22-p31, 1p32-p36, 1q, 2p13-p16, 2p23-p25, 2q31-q33, 3q, 5p, 6p12-pter, 7p12-p13, 7q11.2, 7q21-q22, 8p11-p12, 8q, 11q13-q14, 12p, 12q13-q21, 13q14, 13q22-qter, 14q13-q21, 15q24-qter, 17p11.2-p12, 17q12-q21, 17q22-qter, 18q, 19p13.2-pter, 19cen-q13.3, 20p11.2-p12, 20q, Xp11.2-p21, and Xp11-q13 and genes therein are presented in more detail. The paper with more than 150 references and two tables can be accessed from our web site http://www.helsinki.fi/lglvwww/CMG.html. The data will be updated biannually until the year 2001.  相似文献   

10.
To define better the chromosomal profile of atypical chronic lymphocytic leukemia (aCLL), cytogenetic and interphase cytogenetic studies were performed in 43 cases, using mitogen-stimulated cultures and DNA probes detecting the two most frequently occurring aberrations in CLL, ie +12 and 13q14 deletions. All cases showed monoclonal CD5/CD19-positive lymphocytosis, with more than 10% large lymphocytes and/or prolymphocytes in peripheral blood smears and reactivity with FMC7, or bright expression of surface immunoglobulins in a fraction of the cases. Karyotype aberrations were detected in 27 of 43 cases (62.8%). Recurrent chromosome changes were +12 (nine cases), 13q14 aberrations (five cases), 11q anomalies (three cases), 6q21-q23 abnormalities and 4q anomalies with different breakpoints (two cases each). Additional chromosome changes were seen in four cases with +12, in three cases with 13q14 anomalies, in two cases with 11q anomalies, in one case with 6q and 4q anomalies. Trisomy 12 was associated with 13q14 anomalies in three cases, one of which also had an 11q abnormality; other associations, found in one case each, were: 13q14 deletion with a 6q anomaly, 11q anomaly with 13q- and 7q-, a 6q anomaly with 7q- and +12. Interphase cytogenetics confirmed the results of chromosome banding analysis and showed that six patients with normal karyotype or no mitosis in fact had concomitant +12 and 13q14 deletion in four cases and isolated +12 or 13q14 deletion in one case each, with a resultant 76% overall incidence of cytogenetic abnormalities. The presence of +12, 13q14 deletions, 11q, and 6q21-q23 anomalies in 19 cases was associated with a 2-month median interval between diagnosis and start of treatment, as compared with a 24-month median interval in 14 cases with normal karyotype or non-recurrent chromosome changes (P = 0.003). We conclude that aCLL is characterized by a relatively high incidence of chromosome anomalies, with recurrent chromosome changes, involving chromosomes 12, 13q14, 6q21q23, 11q, and, possibly, 4q. The presence of complex karyotypes, with concomitant abnormalities of 13q, +12, 6q, 11q, suggests that the development of sequential chromosome changes, rather than any single specific anomaly, may underlie leukemogenesis in this cytologic subset of CLL, partially accounting for the relatively aggressive clinical course.  相似文献   

11.
A 49-year-old woman presented with splenic lymphoma with villous lymphocytes (SLVL) that showed a clonal abnormality of del(7)(q22q32) in addition to inv(10)(p13q23), the latter being a previously undescribed abnormality in chronic lymphoproliferative disorders. A review of the literature on cytogenetic abnormalities of SLVL indicates that del(7q) is strongly associated with SLVL and may be important in the pathogenesis of this disorder.  相似文献   

12.
11q23 translocations (t(11q23)) are recurring cytogenetic abnormalities in both acute myeloid leukemia (AML) and acute lymphoblastic leukemia, involving the same gene, ALL1 (or MLL). Mixed lineage antigen expression has been reported in these leukemias, but its frequency and clinical significance are unknown. We immunophenotyped leukemia cells from 19 adult de novo AML patients with t(11q23) by multiparameter flow cytometry. Translocations included t(6;11)(q27;q23), t(9;11)(p22;q23), t(9;11;19)(p22;q23;q13.3), t(2;11)(11;17)(q37;q11q23;q11), t(11;17)(q23;q25), t(11;19)(q23;p13.1), t(11;19)(q23;p13.3) and t(11;22)(q23;q11). FAB types were M4 and M5. The committed stem cell and myeloid antigens HLADr, CD4dim, CD11b, CD13, CD15, CD32, CD33, CD38 and CD64 were each expressed in 80-100% of cases, and the early stem cell and lymphoid antigens CD34, CD56, CD3, CD2 and CD7 in 42, 39, 16, 5 and 5%, respectively. Antigen expression frequencies did not differ from those in 443 adequately karyotyped M4 and M5 cases without t(11q23). Fifteen patients (79%) attained complete remission (CR); median CR duration and survival were 10.0 and 15.1 months. CR duration and survival did not correlate with antigen expression. In particular, patients with t(9;11) survived longer than those with other t(11q23) (median not reached vs 7.6 months; P = 0.048), but antigen expression did not differ in the two groups. Thus frequencies of lymphoid antigen expression are similar in AML with t(11q23) and in other FAB M4 and M5 cases, treatment outcome does not differ in t(11q23) cases with and without lymphoid antigen expression, and better outcome of patients with t(9;11) compared to other t(11q23) does not correlate with differences in antigen expression. Mixed lineage antigen expression is not a distinctive feature of AML with t(11q23).  相似文献   

13.
Cytogenetic and clinical details are presented for 66 patients with myeloid malignancy and chromosome abnormalities of 3q21 and/or 3q26 (3qabns). Bone marrow and/or peripheral blood morphology was assessed for 52 cases. 3qabns in Philadelphia negative (Ph-ve) and positive (Ph+ve) cases were inv(3)(q21q26), (21 Ph-ve, 6 Ph+ve); t(3;3)(q21;q26) (nine Ph-ve, four Ph+ve); and t(3;21)(q26;q22) (four Ph-ve, six Ph+ve). Ph-ve cases also had t(1;3)(p36;q21) (three cases), and t(3;5)(q21;q31)/(q21;q35)/(q26;q21) (five cases aged < 40 years). Three cases, aged < 30 years, had t(3;12)(q26;p13) which defines a new 3qabn subgroup. Monosomy 7 and/or 5q- accompanied inv(3) or t(3;3) in 17/30 cases. All cases had a myeloid malignancy (predominantly AML M1, M4 or M7), frequent trilineage myelodysplasia, and markedly abnormal megakaryopoiesis with micromegakaryocytes (< 30 microns). Thrombocytosis occurred in two cases only. Most Ph+ve cases were in myeloid blast crisis and in Ph+ve cases alone, micro-megakaryocytes were uniquely small (10 microns) in 7/11 cases. There were equal numbers of males and females. Seven secondary leukaemias were found in Ph-ve cases with inv(3), t(3;3), t(3;21), t(1;3) or del(3)(q21). Three cases with t(3;21) (one Ph+ve) were de novo AML or had de novo aplastic anaemia. Survival was rarely greater than 12 months from detection of the 3qabn.  相似文献   

14.
Rhim et al. were first to show that superinfection of Ad12-SV40-infected immortalized human epidermal cells with an RNA tumor virus containing a ras oncogene, such as Ki-MSV, or their treatment with chemical carcinogens, leads to the ability of cells to both grow in anchorage-independent fashion and to form tumors in athymic nude mice. We describe details of the chromosome changes observed during the transformation. The culture was monitored through 40 passages after Ad12-SV40 infection. Chromosomes 9 and 11 showed random monosomy during the initial stages, but by passage 10 clonal evolution of the cell line was well established. Observed chromosome monosomy/trisomy coupled with chromosome rearrangements (identified as chromosomes A through F) were monosomy 13, loss of p arms of 8 and 10, partial loss of 5 (del(5)(q13) and of the q arm of 18(del(18)(q12)), and extra copies of 11q, 20 and 21. During its progression to tumorigenicity, a derived chromosome E containing a segment of 5q, also appeared to play a major role. The cells remained immortalized as long as the 5q segment was present in some of the cell population as derived chromosomes E or F. Derivative chromosome E showed noteworthy changes during the progression to tumorigenicity, in both viral and chemical transformations. There was loss of heterozygosity of 5q due to an exchange of 5q with chromosomes E or F. In Ki-MSV- and 4NQO-transformed cells, presence of an altered chromosome E (identified as E1) was observed. In MNNG-treated cells, there was a selection of population of cells with further alteration in chromosome E (identified as E3). Besides alterations in chromosome E, additional chromosome changes leading to gene activation and amplification indicating a multistep progression to tumorigenicity were observed. The cytogenetic data reiterate the ever-increasing need for molecular analysis of nonrandom karyotype changes.  相似文献   

15.
In order to characterize homogeneously staining regions (HSR) and other 11q13 rearrangements identified cytogenetically, we performed fluorescence in situ hybridization (FISH) using a CCND1 cosmid and five YAC clones spanning chromosomal bands 11q13-14 on metaphase cells from 14 primary and one metastatic head and neck carcinomas. At the cytogenetic level, a total of 17 HSR were detected in ten cases: five were in derivative chromosomes 11 in band 11q13, and 12 were located in other derivative chromosomes. Other forms of 11q13 rearrangements were observed in five cases, whereas two cases had normal chromosomes 11. FISH analysis demonstrated that all HSR but two were derived from the 11q13 band. The size of the amplicon varied from case to case, but the amplification always included the region covered by YAC 55G7, which contains the CCND1 locus. The amplification of CCND1 was confirmed by use of a CCND1 cosmid. We also showed that most of the cases (9 of 11) with 11q13 amplification had lost material from distal 11q. The breakpoints were mapped by FISH and were shown to cluster to the region between YACs 55G7 and 749G2. We conclude that loss of gene(s) in distal 11q may be as important as amplification of genes in 11q13 for the biological aggressiveness of head and neck carcinomas.  相似文献   

16.
A hereditary component is implicated in many different cancers, including hairy cell leukemia (HCL), and may involve an instability of the genome. We have previously documented recurrent clonal and non-clonal chromosomal abnormalities in hairy cells. To ascertain whether this instability of the genome is restricted to the malignant cells or if it might also include normal cells we performed cytogenetic investigations on skin fibroblasts and hairy cells from eight HCL patients and skin fibroblasts from eight referents. The frequency of chromosome abnormalities, regardless of clonality, was significantly increased in the fibroblasts from patients compared to referents. Also, five patients compared to one referent showed clonal abnormalities in their fibroblasts. Immunohistochemical investigations excluded the possibility that the fibroblast cultures were contaminated with hairy cells. Two patients had constitutional abnormalities, inv(5)(p13.1q13.3) and t(13;14), and one additional patient, possibly mosaic, showed the same abnormality, inv(9)(p21-22q22), in both fibroblasts (17/30) and blood (5/21) cells. Aberrations in patient fibroblasts also included sporadic inv(5), del(6)q, inv(19), and del(20)q, abnormalities previously shown to occur in hairy cells. A clonal expansion with trisomy 7 occurred in vitro as documented by fluorescence in situ hybridization (FISH). The only clonal abnormality occurring in a referent was -Y/-Y,+15 in an elderly male. In conclusion, a constitutional chromosomal instability may precede chromosome abnormalities and be of importance in the development of hairy cell leukemia.  相似文献   

17.
A 49-year-old woman patient with atypical myelodysplastic syndrome (MDS) showing a der(3)t(3;12)(q21;p13), and der(12)t(3;12)(q21;p13)inv(3)(q21q26) as an acquired chromosomal abnormality in the bone marrow is described. The chromosomal breakpoints of the presented complex aberration with combination of the inv(3)(q21q26) and t(3;12)(q21;p13) were defined by fluorescence in situ hybridization (FISH) with yeast artificial chromosomes (YACs). The inv(3) is a relatively frequent chromosomal rearrangement in patients with myeloid malignancies and dysmegakaryopoiesis and t(3;12)(q26;p13) has also been reported as a recurrent abnormality in MDS and in blast crisis of chronic myelogenous leukemia (CML). Whereas the t(3;12), inv(3), and t(3;3) are associated with a very poor prognosis, our patient surprisingly had a mild clinical course.  相似文献   

18.
Clonal chromosome aberrations identified after short-term culture are presented for 13 chondrosarcomas; in 5 cases both the primary tumors and local recurrences were studied. The stemline chromosome number was hypodiploid or hyperhaploid in 9 tumors. The most frequent numerical anomalies were, in falling order of frequency, loss of chromosomes Y, 10, 13, and 6, and gain of chromosomes 7 and 20. No recurrent structural rearrangement was found, but chromosome bands 5q13, 1q21, 7p11, and 20q11 were each involved in three different rearrangements. Karyotypic heterogeneity was assessed in two different ways: as the presence of more than one clone in one sample and as the presence of different clones in different samples from the same surgical specimen. Clonal karyotypic evolution was demonstrated in 6 of the 7 cases in which two or more samples could be investigated. All 6 showed intersample heterogeneity. Intrasample heterogeneity was found in only 5 of the 28 samples with aberrations. By comparing the incidences of the nonrandomly occurring aberrations in stemlines and sidelines in the heterogeneous tumors, it was possible to conclude that loss of chromosome 13 and rearrangement of band 5q13 were early events in the clonal evolution.  相似文献   

19.
Plexiform fibrohistiocytic tumors are rare lesions of proposed myofibroblastic origin occurring primarily in infants and children. There is a characteristic biphasic histology comprised of both fibroblastic and histiocyte-like components. These tumors tend to be locally aggressive with prognosis dependent on completeness of resection. A previous cytogenetic case report of this tumor described a stemline clone with a karyotype of 46,XY,-6,-8, del(4)(q25q31),del(20)(q11.2),+der(8)t(8;?) (p22;?),+mar. We report a different cytogenetic finding in another plexiform fibrohistiocytic tumor which demonstrated a simpler karyotype of 46,XY,t(4;15)(q21;q15). The implications of cytogenetic heterogeneity in fibroblastic tumors is briefly discussed.  相似文献   

20.
Clonal chromosomal changes in multiple myeloma (MM) and related disorders are not well defined, mainly due to the low in vivo and in vitro mitotic index of plasma cells. This difficulty can be overcome by using comparative genomic hybridization (CGH), a DNA-based technique that gives information about chromosomal copy number changes in tumors. We have performed CGH on 25 cases of MM, 4 cases of monoclonal gammopathy of uncertain significance, and 1 case of Waldenstrom's macroglobulinemia. G-banding analysis of the same group of patients demonstrated clonal chromosomal changes in only 13 (43%), whereas by CGH, the number of cases with clonal chromosomal gains and losses increased to 21 (70%). The most common recurrent changes detected by CGH were gain of chromosome 19 or 19p and complete or partial deletions of chromosome 13. +19, an anomaly that has so far not been detected as primary or recurrent change by G-banding analysis of these tumors, was noted in 2 cases as a unique change. Other recurrent changes included gains of 9q, 11q, 12q, 15q, 17q, and 22q and losses of 6q and 16q. We have been able to narrow the commonly deleted regions on 6q and 13q to bands 6q21 and 13q14-21. Gain of 11q and deletion of 13q, which have previously been associated with poor outcome, can thus be detected by CGH, allowing the use of this technique for prognostic evaluation of patients, without relying on the success of conventional cytogenetic analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号