首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 283 毫秒
1.
The roentgenoluminescence spectra, temperature-dependent activator luminescence, optically stimulated luminescence, and the effect of IR irradiation on the yield and spectral composition of the low-temperature roentgenoluminescence and thermoluminescence curves of the Y3Al5O12:Ce3+ scintillator have been studied in the temperature range 85–295 K. The results, coupled with earlier data, suggest that the Ce3+ ions in the garnet crystal studied form Ce3+ p hole centers and increase the concentration of electronic F ?-centers responsible for the IR stimulation band at 940 nm. The reduction in roentgenoluminescence yield on cooling Y3Al5O12:Ce3+ to below 230 K is due to the significant localization of excited carriers at defects, which show up in thermoluminescence peaks and optical stimulation spectra. The low-temperature Ce3+ luminescence in Y3Al5O12:Ce3+ seems to result from the recombination of activator-bound excitons.  相似文献   

2.
This article present the reports on optical study of Eu2+ and Ce3+ doped SrMg2Al6Si9O30 phosphors, which has been synthesized by combustion method at 550 °C. Here SrMg2Al6Si9O30:Eu2+ emission band observed at 425 nm by keeping the excitation wavelength constant at 342 nm, whereas SrMg2Al6Si9O30:Ce3+ ions shows the broad emission band at 383 nm, under 321 nm excitation wavelength, both the emission bands are assigned due to 5d–4f transition respectively. Further, phase purity, morphology and crystallite size are confirmed by XRD, SEM and TEM analysis. However, the TGA analysis is carried out to know the amount of weight lost during the thermal processing. The CIE coordinates of SrMg2Al6Si9O30:Eu2+ phosphor is observed at x?=?0.160, y?=?0.102 respectively, which may be used as a blue component for NUV-WLEDs. The critical distance of energy transfer between Ce3+ ions and host lattice is found to be 10.65 Å.  相似文献   

3.
Mg2+/Ga3+ doped Y3Al5O12:Ce3+ phosphors were synthesized through a solid state reaction. The phase and luminescent of the synthesized phosphors were investigated. For Ga3+ codoped Y2.96Ce0.04Al(5?x)GaxO12 phosphors, the emission intensity increases with the increase of Ga3+ concentration up to Y2.96Ce0.04Al4.80Ga0.20O12 and then decreases with a further increase of Ga3+ concentration, but the emission peak shifts to shorter wavelength continuously in the Ga3+ doping concentration range of 0.05–0.25. For Mg2+/Ga3+ codoped Y2.96Ce0.04Al(4.8?y)Ga0.20MgyO12 phosphors, the emission intensity decreases and the emission peak shifts to longer wavelength continuously in the Mg2+ doping concentration range of 0.02–0.12. The emission spectra of Y2.96Ce0.04Al(4.8?y)Ga0.20MgyO12 phosphors demonstrate that the codoped Mg2+/Ga3+ ions not only induce the enhancement of Y2.96Ce0.04Al5O12 emission intensity but also lead to the red shift of Y2.96Ce0.04Al5O12 emission peak. The decay lifetimes decrease in Mg2+/Ga3+ codoped Y2.96Ce0.04Al5O12 phosphors due to defects formed by substitutions of Y3+ by Mg2+/Ga3+.  相似文献   

4.
Ce3+/Mn2+ singly doped and codoped Mg2Al4Si5O18 phosphors were synthesized by a solid state reaction. The phase, luminescent properties and thermal stability of the synthesized phosphors were investigated. Ce3+ and Mn2+ singly doped Mg2Al4Si5O18 phosphors show emission bands locating in blue and yellow–red regions, respectively. In Ce3+ and Mn2+ codoped Mg2Al4Si5O18, tunable luminescence was obtained because of the energy transfer from Ce3+ to Mn2+. In Mg2Al4Si5O18:Ce3+/Mn2+ phosphors with a fixed Ce3+ concentration, energy transfer efficiency increases with the increasing Mn2+ concentration, which is confirmed by the continually decreasing intensity and shortening decay time of Ce3+ emission. Moreover, the luminescent properties and thermal stability provide a great significance on the applications in the field of light emitting diodes.  相似文献   

5.
Al18B4O33:Eu3+, Tb3+ whiskers have been successfully prepared by a simple gel nano-coating method using aluminum isopropoxide as the starting materials. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), photoluminescence (PL), and thermogravimetric analysis (TGA) were used characterize the samples. The results show coexistence of the crystal phase Al18B4O33, amorphous phase, and Eu3+, Tb3+ ions of the samples with initial addition Al/B ratios from 3 to 1 are incorporated into the amorphous phase. The Al18B4O33:Eu3+, Tb3+ whiskers are very straight with an average diameter of 600 nm and lengths ranging from 5 to 10 μm. Under ultraviolet excitation at 365 nm, samples show mainly exhibit the characteristic emission of Eu3+ corresponding to \( ^{ 5} {\text{D}}_{ 0} \to {\text{F}}_{ 1 , 2} \) transitions due to an efficient energy transfer occurs from Tb3+ to Eu3+.  相似文献   

6.
Bluish green emitting phosphor, Ca3Al2O6:Ce3+, is prepared by low-temperature combustion method. X-ray diffraction, photoluminescence, scanning electron microscopy techniques are used to characterize the synthesized phosphor. The most efficient bluish green (483 nm) emission is observed under the excitation by near UV light. The emission characteristics are credited to 5d → 4f type transitions in Ce3+. The luminescence properties of Eu2+ are predicted for the first time from those of Ce3+. Also, photoluminescence of Eu3+ is studied in the same host. The emission spectrum of Ca3Al2O6:Eu3+ shows the peak at 592 (orange) and 614 nm (red) wavelengths. Ca3Al2O6:Ce3+phosphor can be a potential blue phosphor for field emission display, solid-state lighting and LED.  相似文献   

7.
Compound CaAl4O7 (CA4), SrAl4O7 (SA4), CaAl12O19 (CA12) and SrAl12O19 (SA12) have been synthesized by using single step combustion method. The phosphors have been characterized by XRD, SEM and PL techniques. Both CA4 and SA4 possess monoclinic crystal structure whereas CA12 and SA12 possess hexagonal structure. Effects of crystal symmetry on the emission spectrum have been studied by doping the samples with Ce3+ and Eu2+ ions. The luminescence properties of Ce3+ and Eu2+ in these hosts is discussed on the basis of their covalent character and the crystal field splitting of the d-orbital of dopant ions. The spectroscopic properties, crystal field splitting, centroid shift, red shift and stokes shift have been studied. Spectroscopic properties of Eu2+ ions have been accurately predicted from those of Ce3+ ions in the same host. Most importantly experimental results were matched excellently with the calculated results. The preferential substitution of Ce3+ and Eu2+ at different Ca2+, Sr2+ crystallographic sites have been discussed. The dependence of emission wavelengths of Ce3+ and Eu2+ on the local symmetry of different crystallographic sites was also studied by using Van Uitert’s empirical relation. Differences in the emission spectrum of these samples have been observed despite their similar crystal structures and space group. Possible reasons have been discussed.  相似文献   

8.
BaAl2O4:Eu2+,RE3+ (RE3+=Y, Pr) down conversion nanophosphors were prepared at 600 °C by a rapid gel combustion technique in presence of air using boron as flux and urea as a fuel. A comparative study of the prepared materials was carried out with and without the addition of boric acid. The boric acid was playing the important role of flux and reducer simultaneously. The peaks available in the XPS spectra of BaAl2O4:Eu2+ at 1126.5 and 1154.8 eV was ascribed to Eu2+(3d 5/2) and Eu2+(3d 3/2) respectively which confirmed the presence of Eu2+ ion in the prepared lattice. Morphology of phosphors was characterized by tunneling electron microscopy. XRD patterns revealed a dominant phase characteristics of hexagonal BaAl2O4 compound and the presence of dopants having unrecognizable effects on basic crystal structure of BaAl2O4. The addition of boric acid showed a remarkable change in luminescence properties and crystal size of nanophosphors. The emission spectra of phosphors had a broad band with maximum at 490–495 nm due to electron transition from 4f 65d 1 → 4f 7 of Eu2+ ion. The codoping of the rare earth (RE3+=Y, Pr) ions help in the enhancement of their luminescent properties. The prepared phosphors had brilliant optoelectronic properties that can be properly used for solid state display device applications.  相似文献   

9.
In this research, we reported the synthesis of Eu2+ and Dy3+ co-doped SrAl2O4 phosphor nanopowders with high brightness and long afterglow by urea-nitrate solution combustion synthesis (SCS) at 600 °C, followed by heating the resultant combustion ash at 1,200 °C in a weak reductive atmosphere (5% H2 + 95% N2). The broad-band UV-excited luminescence of the SrAl2O4: Eu2+, Dy3+ nanopowders was observed at λ max = 517 nm due to transitions from the 4f65d1 to the 4f7 configuration of the emission center (Eu2+ ions). The excitation spectra consist of 240- and 254 nm broad peaks. Finally, it was found that the optimum ratio of urea is 2.5 times higher than theoretical quantities for the best emission condition of SrAl2O4: Eu2+, Dy3+ phosphor nanopowders.  相似文献   

10.
The SrLa2?xO4:xEu3+ phosphors are synthesized through high-temperature solid-state reaction method at 1473 K with various doping concentration. Their phase structures, absorption spectra, and luminescence properties are investigated by X-ray diffraction (XRD), UV–Vis spectrophotometer and photoluminescence spectrometry. The intense absorption of SrLa2?xO4:xEu3+ phosphors have occurred around 400 nm. The prominent luminescence spectra of the prepared phosphors exhibited bright red emission at 626 nm. The doping concentration 0.12 mol% of Eu3+ is shown to be optimal for prominent red emission and chromaticity coordinates are x?=?0.692, y?=?0.3072. Considering the high colour purity and appropriate emission intensity of Eu3+ doped SrLa2O4 can be used as red phosphors for white light emitting diodes (WLEDs).  相似文献   

11.
Lu3Al5O12:Ce3+ phosphor powder, which exhibits green emission band, was synthesized by the high-temperature solid-state reaction method with a flux BaF2. X-ray diffraction (XRD), photoluminescence (PL) spectra, and fluorescent lifetime spectra were used to characterize the structure and luminescent properties of the sample. The XRD patterns indicated that when prepared at 1550 °C for 3 h with 4 wt% flux, Lu3Al5O12:Ce3+ phosphors powder is the garnet cubic crystal system structure. Photoluminescence (PL) spectra showed that the Lu3Al5O12:Ce3+ phosphor powder can be effectively excited by near ultraviolet and blue light, emitting broad band peaking at 505 nm, which is attributed to 2F5/2?→?2D5/2 transition. The self-concentration quenching mechanism of Ce3+ is the dipole–dipole interaction. Small amount of Pr3+ increased red light emission at 610 nm. Photoluminescence (PL) spectra and fluorescent lifetime spectra indicated that there was an efficient energy transfer process between Ce3+ and Pr3+.  相似文献   

12.
Ba2LaV3O11:Eu3+ phosphors were firstly synthesized by the traditional solid-state reaction method at 1100 °C. Their luminescence properties were investigated by photoluminescence excitation and emission spectra. The excitation spectrum shows a broad band centered at about 275 nm in the region from 200 to 370 nm, which is attributed to an overlap of the charge transfer transitions of O2??→?V5+ and O2??→?Eu3+. The phosphors exhibit the red emissions of Eu3+ and the emission intensity ratio of 5D0?→?7F2 to 5D0?→?7F1 is dependent on the Eu3+ concentration due to an environment change about Eu3+ ions. Concentration quenching occurs at 30 mol% in the phosphors and exchange interaction is its main mechanism. Ba2LaV3O11:Eu3+ displays tunable CIE color coordinates from yellow orange to red depended on Eu3+ content, which may have a potential application for illuminating and display devices.  相似文献   

13.
A new series of Eu3+ ions-activated calcium gadolinium tungstate [Ca2Gd2W3O14] phosphors were synthesized by conventional solid-state reaction method. The X-ray diffraction patterns of the powder samples indicate that the Eu3+: Ca2Gd2W3O14 phosphors are of tetragonal structure. The prepared phosphors were well characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR), photoluminescence (PL), and mechanoluminescence (ML) spectra. PL spectra of Eu3+: Ca2Gd2W3O14 powder phosphors have shown strong red emission at 615 nm (5D0 → 7F2) with an excitation wavelength λ exci = 392 nm (7F0 → 5L6). The energy transfer from tungstate groups to europium ions has also reported. Mechanoluminescence studies of Eu3+: Ca2Gd2W3O14 phosphors have also been explained systematically.  相似文献   

14.
The structure of undoped and europium-doped ZnGa2Se4 has been studied, and the interplanar spacings, the Miller indices of the observed reflections, and their relative intensities have been determined. The photoluminescence spectra of ZnGa2Se4 and ZnGa2Se4:Eu2+ crystals have been measured at temperatures from 77 to 230 K. The 566-nm band in the spectrum of ZnGa2Se4:Eu2+ is assigned to the Eu2+4f 65d→4f 7(8 S 7/2) electronic transition, and the bands at 591 and 646 nm are attributed to transitions of donor-acceptor pairs.  相似文献   

15.
The curves of thermally stimulated luminescence of Gd3Ga3Al2O12:Ce3+ ceramics (a nominally pure sample and samples doped with rare-earth ions) are measured in the temperature range of 80–550 K. The depth and the frequency factor of electron traps established by Eu and Yb impurities are determined. An energy-level diagram of rare-earth ions in the bandgap of Gd3Ga3Al2O12 is presented.  相似文献   

16.
We have studied the gamma luminescence of undoped and Pr3+- or Ce3+-doped Y3Al5O12 crystals gamma-irradiated at 77 and 300 K. The results demonstrate that, depending on temperature, three excitonassisted activator luminescence excitation mechanisms are possible in YAG crystals.  相似文献   

17.
The spectral characteristics of thermostimulated luminescence, steady-state roentgenoluminescence and photostimulated luminescence (PSL) buildup and decay kinetics, and the effect of IR irradiation on the roentgenoluminescence yield and glow curves of CaI2:Eu2+, CaI2:Gd2+, CaI2:Tl+, CaI2:Pb2+, CaI2:Mn2+, and CaI2: Pb2+, Mn2+ crystals grown by the Bridgman-Stockbarger method have been studied in the temperature range 90–295 K. Coupled with earlier data, the present results on the influence of oxygen and hydrogen impurities on the spectral characteristics of CaI2 indicate that the activation of calcium iodide with Eu2+, Gd2+, Tl+, Pb2+, and Mn2+ leads to the formation of cation impurity-native defect complexes, which act as carrier traps and are responsible for the thermostimulated luminescence in the range 150–295 K. IR exposure after 90-K x-ray excitation gives rise to flash PSL and influences the thermostimulated luminescence light sum. The nature of the emission and trapping centers involved and the mechanisms of recombination luminescence excitation in the crystals are discussed.  相似文献   

18.
A series of polycrystalline Na4Ca4(Si6O18):Eu3+ orange emitting phosphors were synthesized by a conventional high-temperature solid-state reaction. The phase formation was confirmed by X-ray power diffraction analysis. The excitation spectra show a strong host absorption indicating an efficient energy transfer process from O2? to Eu3+ ions. Upon NUV radiation, the phosphors showed strong red emission around 610 nm (5D0 → 7F2) and orange emission around 591 nm (5D0 → 7F1), but the 5D1,2,3 emission nearly can not be seen. Compared with the luminescence properties of Li+, Na+, and K+ co-doped samples, we deduced that Na+ ions probably prefer to dope into the intrinsic Na vacancies rather than Ca2+ ions vacancies in Na4Ca4(Si6O18) crystal. Thermal stability properties, quantum efficiency and chromaticity coordinates of the phosphors have been investigated for the potential application in white LEDs.  相似文献   

19.
Al3+/Mg2+ doped Y2O3:Eu phosphor was synthesized by the glycine-nitrate solution combustion method. In contrast to Y2O3:Eu which showed an irregular shape of agglomerated particles (the mean particle size >10 μm), the morphology of Al3+/Mg2+ doped Y2O3:Eu crystals was quite regular. Al3+/Mg2+ substituting Y3+ in Y2O3:Eu resulted in an obvious decrease of the particle size. Meanwhile, higher the Al3+/Mg2+ concentration, smaller the particle size. In particular, the introduction of Al3+ ion into Y2O3 lattice induced a remarkable increase of PL and CL intensity. While, for Mg2+ doped Y2O3:Eu samples, their PL and CL intensities decreased. The reason that causes the variation of PL and CL properties for Al3+ and Mg2+ doped Y2O3:Eu crystals was concluded to be related to sites of Al3+ and Mg2+ ions inclined to take and the difference of ion charge.  相似文献   

20.
The influence of activation of the Y2O3 matrix of the Y2O3:Eu3+ phosphor by Bi3+ ions on the luminescence of Eu3+ and Bi3+ ions in it and on conditions of the excitation energy transfer to luminescence centers is studied. It is shown that the presence of Bi3+ ions leads to the appearance of recombination luminescence with participation of bismuth ions at low concentrations (up to 6–8 at %) of the dominant activator europium and to an increase in the threshold of intrinsic concentration quenching of its luminescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号