首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The T-x phase diagram of the Cu2Te–Al2Te3 semiconductor system was achieved experimentally using 24 different mixtures of the binary compounds. The results of X-ray powder diffraction, differential thermal analysis, and electron microprobe analysis are presented. It was established that only one ternary compound CuAlTe2 exists in this system crystallizing in the tetragonal structure of chalcopyrite with lattice constants at room temperature a = 6.035(5) and c = 11.94(1) Å. The maximal homogeneity region of this compound was discovered being limited by compositions with 0.474 and 0.544 molar part of Al2Te3 at 673 K. CuAlTe2 decomposes peritectically at 1,183 K to (Cu2Te)0.97(Al2Te3)0.03 alloy with the structure of Cu2Te and liquid with the composition close to (Cu2Te)0.40(Al2Te3)0.60 which transforms into homogeneous liquid region at 1,240 K.  相似文献   

2.
In this work, we have described the antibacterial activities of Fe3O4 nanoparticles with different organic parts, including Humic acid (HA), Nicotinic acid (Nico) and Histidine (His), and the antibacterial activity of MnFe2O4 nanoparticles coated with PANI and SiO2 against different bacteria and some standard antibacterial drugs. The present study revealed that the newly fabricated various Fe3O4 and MnFe2O4 nanocomposites, when combined with some different organic parts, are superiour antibacterial agents. Also, the synthesized nanocomposites can be easily separated from aqueous solution by magnetic filtration without any contamination of the medium.  相似文献   

3.
Herein, we report the results of the in vitro dissolution tests, which were carried out by immersing the selected glass-ceramic samples in artificial saliva (AS) for various time periods of up to 42 days. In our experiments, the SiO(2)-MgO-Al(2)O(3)-K(2)O-B(2)O(3)-F glass ceramics with different crystal morphology and crystal content were used and a comparison is also made with the baseline glass samples (without any crystals). The bioactivity of the samples was probed by measuring the changes in pH, ionic conductivity and ionic concentration of AS following in vitro dissolution experiments. High resistance of the selected glass-ceramic samples against in vitro leaching has been demonstrated by minimal weight loss (<1%) and insignificant density change, even after 6 weeks of dissolution in artificial saliva. While XRD analysis reveals the change in surface texture of the crystalline phase, FT-IR analysis weakly indicated the Ca-P compound formation on the leached surface. The experimental measurements further indicate that the leaching of F(-), Mg(2+) ions from the sample surface commonly causes the change in the surface chemistry. Furthermore, the presence of (Ca, P, O)-rich mineralized deposits on the leached glass-ceramic surface as well as the decrease in Ca(2+) ion concentrations in the leaching solutions (compared to that in the initial AS solution) provide evidences of the moderate bioactive or mild biomineralisation behaviour of investigated glass-ceramics.  相似文献   

4.
Crystallization and microstructure of glasses with the molar compositions 1MgO·1.2Al2O3·2.8SiO2·1.2TiO2·xLa2O3 (x = 0.1 and 0.4) were thermally treated at different temperatures in the range from 950 to 1250 °C and then analyzed by X-ray diffraction and scanning electron microscopy, in combination with energy-dispersive X-ray spectroscopy and electron backscatter diffraction. It was found that the microstructure is first homogeneous with the precipitation of randomly distributed crystals and then indialite domains with embedded perrierite and rutile crystals are formed. For higher temperatures or prolonged times, more domains appear and expand into the bulk of the sample. Finally, the entire sample consists of the indialite domains and the boundaries that are enriched in rutile, perrierite, and magnesium aluminotitanate. Nevertheless, very distinct differences are observed between the samples with different La2O3 concentrations. For the sample with x = 0.4, the domains were detected at lower temperatures, while the quantity and size of the domains increase faster due to the promoted precipitation of indialite. For the sample with x = 0.1, in addition to the domain boundaries, secondary boundaries between the “regions” (assemblages of the domains) are observed in a larger length scale. The average size of the crystalline phases found between the “regions” is larger than that typically observed at the domain boundaries. The sizes of the crystals at the boundaries decrease with higher concentrations of La2O3, and the crystals (especially perrierite) within the domains become larger, resulting in a more homogeneous microstructure. This results in better dielectric properties, i.e., much higher quality factor for the sample with x = 0.4 in comparison to that with x = 0.1 after heat-treatment at 1150 or 1250 °C.  相似文献   

5.
We have studied phase relations in the K2MoO4–Ln2(MoO4)3–Zr(MoO4)2 (Ln = La–Lu, Y) systems by the method of “intersecting cuts,” identified pseudobinary joins in their composition triangles, and constructed their phase compatibility diagrams. The systems have been shown to contain new ternary molybdates with the general formula K5LnZr(MoO4)6 (Ln = Dy–Lu and Y). The thermal characteristics of the synthesized compounds have been studied by differential scanning calorimetry in the temperature range 25–700°C. The new ternary molybdates crystallize in a trigonal structure (sp. gr. R\(\bar 3\)c, Z = 6).  相似文献   

6.
La2/3Cu3Ti4O12 (LCTO) precursor powders were synthesized by the sol–gel method. Effect of sol conditions and sintering process on microstructure and dielectric properties of LCTO powders or ceramics were investigated systematically. The optimum sol conditions for the synthesis of precursor powders were as follows: the Ti4+ concentration of 1.00 mol/L, the molar ratio of water and titanium of 5.6:1 and the sol pH of 1.0, respectively. After sintered at 1105 °C for 15 h, the LCTO ceramics exhibited more homogeneous microstructure, much higher dielectric constant (ca 09–1.6 × 104) and lower dielectric loss (ca 0.057). The higher dielectric constant of the LCTO ceramics might be due to the internal barrier layer capacitor effect. The LCTO ceramics showed two kinds of conductivity activation energy for grain boundary conductivity from complex impedance analysis. The transition temperature of two activation energy values occured between 170 and 210 °C. The temperature range of 170–210 °C was critical pseudocritical region of the dielectric constant, dielectric loss and activation energy. Furthermore, it was concluded that the grain boundary play an important role for electrical properties.  相似文献   

7.
By the combined use of the sol-gel and pulsed laser deposition methods, the SrTiO3/YBa2Cu3O7?x (STO/YBCO) heterostructure was prepared on a LaAlO3 substrate. XRD results and φ scanning test showed that the prepared STO/YBCO heterostructure had good biaxial texture. Moreover, a Pt electrode was sputtered on the STO/YBCO heterostructure to investigate the current density-voltage (J ? V) characteristic curves of STO/YBCO in the 50–300 K temperature range. The results showed that the STO/YBCO heterostructure had good rectifying characteristics. With an applied positive bias voltage smaller than 3.7 V, the current density of the STO/YBCO heterostructure decreased with the decrease of temperature; for higher voltages, on the contrary, the current density increased with the decrease of temperature. When the YBCO experienced superconducting transition, the turn-on voltage (V t) changed suddenly due to the sudden opening of the superconducting energy gap of YBCO. The V t variation obtained from the experiment was essentially consistent with the known value of the YBCO superconducting energy gap.  相似文献   

8.
It is shown that the ceramic superconductor YBa2Cu3O7 as well as the superconducting intermetallic compound MgB2 possesses a narrow, partly filled “superconducting band” with Wannier functions of special symmetry in their band structures. This result corroborates previous observations about the band structures of numerous superconductors and non-superconductors showing that evidently superconductivity is always connected with such superconducting bands. These findings are interpreted in the framework of a nonadiabatic extension of the Heisenberg model. Within this new group-theoretical model of correlated systems, Cooper pairs are stabilized by a nonadiabatic mechanism of constraining forces effective in narrow superconducting bands. The formation of Cooper pairs in a superconducting band is mediated by the energetically lowest boson excitations in the considered material that carry the crystal-spin angular momentum 1⋅. These crystal-spin-1 bosons are proposed to determine whether the material is a conventional low-T c or a high-T c superconductor. This interpretation provides the electron–phonon mechanism that enters the BCS theory in conventional superconductors.  相似文献   

9.
The Cu0.5Tl0.5Ba2Ca2?y Mg y Cu3O10?δ (y=0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0) superconductor has been synthesized at the atmospheric pressure by the solid-state reaction method. The zero resistivity critical temperature is found to increase to 98 K with Mg concentration of y=0.6, but saturates to 97 K with further enhancement of Mg to y=0.8, 1.0, and 1.5. The Mg doped material grows in tetragonal structure and follows P4/mmm symmetry with a &; c-axes lengths of 3.894 Å &; 15.091 Å for y=1.5. The axes lengths were decreased with the increase of Mg content in the unit cell, which shows that anisotropy of the material decreases. The critical current density and the quantity of diamagnetism in the samples with Mg contents are higher than in the samples without Mg. In order to realize the effects of decreased axes lengths on the phonon modes of Cu0.5Tl0.5Ba2Ca2?y Mg y Cu3O10?δ , we have carried out FTIR absorption measurements.  相似文献   

10.
Gadolinium doped bismuth borate glasses containing up to 30 mol% Y2O3 were prepared by fast melt quenching method. The effect of yttrium on the local order in 3B2O3 · Bi2O3 and B2O3 · Bi2O3 glass matrices, particularly on the bismuth sites, was investigated by infrared (IR) spectroscopy and electron paramagnetic resonance (EPR) of Gd3+ ions. The IR results show that the local structure is more ordered in the glass system with higher bismuth content and the progressive addition of yttrium increases the local disorder in both bismuth–borate glass matrices. The EPR results indicate that Gd3+ ions occupy both bismuth and yttrium sites and reflect the same structural disorder like that suggested by IR results.  相似文献   

11.
The influence of sample thickness and cooling rate on the oxidation kinetics of dense small grain YBa2Cu3O7−δ ceramics is presented. The oxidation behavior is strongly dependent on the phase type exhibited by the material. At high temperature, in the tetragonal phase, the oxygen stoichiometry of the ceramic core is dependent on the diffusion length and isothermal treatments improve the overall. Value increase in the sample thickness decreases the oxygen content. At low temperature, in the orthorhombic phase, the oxidation during cooling becomes very fast and the sample thickness is not observed to be a limiting parameter. An ultrasonic determination of Young’s modulus as a function of temperature shows that this behavior cannot be related to the formation of microcracks. The improvement in oxidation observed in this temperature range is considered as characteristic of a very fast diffusion of oxygen along the grain boundaries, which is enhanced below the tetragonal to orthorhombic transition by the stresses resulting from anisotropic thermal contraction.  相似文献   

12.
Magnetic bioglass ceramics (MBC) are being considered for use as thermoseeds in hyperthermia treatment of cancer. While the bioactivity in MBCs is attributed to the formation of the bone minerals such as crystalline apatite, wollastonite, etc. in a physiological environment, the magnetic property arises from the magnetite [Fe3O4] present in these implant materials. A new set of bioglasses with compositions 41CaO · (52 ? x)SiO2 · 4P2O5  · xFe2O3 · 3Na2O (2 ≤ x ≤ 10 mol% Fe2O3) have been prepared by melt quenching method. The as-quenched glasses were then heat treated at 1050°C for 3 h to obtain the glass-ceramics. The structure and microstructure of the samples were characterized using X-ray diffraction and microscopy techniques. X-ray diffraction data revealed the presence of magnetite in the heat treated samples with x ≥ 2 mol% Fe2O3. Room temperature magnetic property of the heat treated samples was investigated using a Vibrating Sample Magnetometer. Field scans up to 20 kOe revealed that the glass ceramic samples had a high saturation magnetization and low coercivity. Room temperature hysteresis cycles were also recorded at 500 Oe to ascertain the magnetic properties at clinically amenable field strengths. The area under the magnetic hysteresis loop is a measure of the heat generated by the MBC. The coercivity of the samples is another important factor for hyperthermia applications. The area under the loop increases with an increase in Fe2O3 molar concentration and the. coercivity decreases with an increase in Fe2O3 molar concentration The evolution of magnetic properties in these MBCs as a function of Fe2O3 molar concentration is discussed and correlated with the amount of magnetite present in them.  相似文献   

13.
A series of quasi-multilayers of YBa2Cu3O7?δ (YBCO)/Y2O3 specifically 70 × (m YBCO/n Y2O3) were prepared on SrTiO3 single crystal using pulsed-laser deposition (PLD) with a controlled deposition pulses of m = 40 and n = 2, 5, and 10 for YBCO and Y2O3, respectively. The x-ray diffraction patterns indicate that all the present quasi-multilayers exhibit good c-axis orientation. The angular dependence of critical current density (J c ) on applied magnetic field directions are systemically measured to study the anisotropic vortex pinning performances for those quasi-multilayers. It is revealed that compared with the pure YBCO films, the quasi-multilayers with n = 2, i.e., a proper constituent pulse of Y2O3, exhibits the enhanced vortex pinning abilities in all angles between c-axis orientation and the applied magnetic field direction. As well, such a quasi-multilayer film (n = 2) shows the higher lift factor J c (Θ)/ J c (90°) and much better vortex pinning properties at high fields and high temperatures, showing promising potential for coated conductor application.  相似文献   

14.
The influences of Bi substitution on microwave dielectric properties of Ba4(La0.5Sm0.5)9.33Ti18O54 solid solutions were investigated. Dielectric ceramics with general formula Ba4(La(0.5−z)Sm0.5Bi z )9.33Ti18O54, z = 0.0–0.2 were prepared by conventional solid state route. The structural analysis of all the samples was carried out by X-ray diffraction and scanning electron microscopy. The dielectric properties were investigated as a function of Bi contents using open-ended coaxial probe method in the frequency range 0.3–3.0 GHz at room temperature. Dielectric constant varies from 83 to 88 and loss tangent from 2.1 × 10−3 to 5.5 × 10−3 at 3 GHz with temperature coefficient of resonant frequency changing from 106.7 to −8.4 ppm/oC as Bi contents increases from z = 0.00–0.20. It has been found that dielectric constant and temperature coefficient of resonant frequency improve whereas loss tangent is adversely affected with increase in Bi substitution.  相似文献   

15.
The phase relations in the CaGa2S4–GaSe system have been studied using differential thermal analysis, X-ray diffraction, microstructural analysis, microhardness tests, and density measurements, and its Tx phase diagram has been mapped out. The CaGa2S4–GaSe system has been shown to be a pseudobinary join of the ternary system Ca–Ga–Se. The CaGa2S4–GaSe system has been found to contain limited solid solutions based on the constituent selenides. The electrical conductivity of CaGa2S4 has been measured and its current–light behavior and photoelectric properties have been studied.  相似文献   

16.
Catalytic combustion of methane was investigated on Pt and PdO-supported CeO2–ZrO2–Bi2O3/γ-Al2O3 catalysts prepared by a wet impregnation method in the presence of polyvinylpyrrolidone. The catalysts were characterized by X-ray fluorescence analysis, X-ray powder diffraction, X-ray photoelectron spectra, transmission electron microscopy, and BET specific surface area measurements. The Pt/CeO2–ZrO2–Bi2O3/γ-Al2O3 and PdO/CeO2–ZrO2–Bi2O3/γ-Al2O3 catalysts were selective for the total oxidation of methane into carbon dioxide and steam, and no by-products such as HCHO, CO, and H2 were obtained. The catalytic activities of the PdO/CeO2–ZrO2–Bi2O3/γ-Al2O3 catalysts were relatively higher than those of the Pt-supported catalysts, due to the facile re-oxidation of metallic Pd into PdO based on lattice oxygen supplied from the CeO2–ZrO2–Bi2O3 bulk. A decrease in the calcination temperature during the preparation process was found to be effective in enhancing the specific surface area of the catalysts, whereby particle agglomeration was inhibited. Optimization of the PdO amount and calcination temperature enabled complete oxidation of methane at temperatures as low as 320 °C on the 11.6 wt% PdO/CeO2–ZrO2–Bi2O3/γ-Al2O3 catalyst prepared at 400 °C.  相似文献   

17.
(10Li2O–20GeO2–30ZnO–(40-x)Bi2O3xFe2O3 where x = 0.0, 3, 6, and 9 mol%) glasses were prepared. A number of studies, viz. density, differential thermal analysis, FT-IR spectra, DC and AC conductivities, and dielectric properties (constant ε′, loss tan δ, AC conductivity, σ ac, over a wide range of frequency and temperature) of these glasses were carried out as a function of iron ion concentration. The analysis of the results indicate that, the density and molar volume decrease with an increasing of iron content indicates structural changes of the glass matrix. The glass transition temperature T g and onset of crystallization temperature T x increase with the variation of concentration of Fe2O3 referred to the growth in the network connectivity in this concentration range, while glass-forming ability parameter ΔT decrease with increase Fe2O3 content, indicates an increasing concentration of iron ions that take part in the network-modifying positions. The FT-IR spectra evidenced that the main structural units are BiO3, BiO6, ZnO4, GeO4, and GeO6. The structural changes observed by varying the Fe2O3 content in these glasses and evidenced by FTIR investigation suggest that the iron ions play a network modifier role in these glasses while Bi2O3, GeO2, and ZnO play the role of network formers. The temperature dependence of DC and AC conductivities at different frequencies was analyzed using Mott’s small polaron hopping model and, the high temperature activation energies have been estimated and discussed. The dielectric constant and dielectric loss increased with increase in temperature and Fe2O3 content.  相似文献   

18.
The purpose of this work is to study the optical properties and crystallization of glasses in the ternary system Bi2O3–MoO3–B2O3. In order to verify the obtaining of bismuth borate crystal phases several glass compositions have been selected for crystallization. The obtained samples were characterized by X-ray diffraction, scanning electron microscopy and UV–Vis spectroscopy. The UV–Vis spectroscopy showed that the obtained glasses are transparent in the visible region. The values of optical band gap (E opt) and changes in cut-off (λc) depending on composition are reported. It was established that the increase in the MoO3 content led to decreasing the transmittance of the glasses. Moreover, the absorption edge shifts towards longer wavelength.  相似文献   

19.
The kinetics of thermal dehydration of Mg3(PO4)2 · 8H2O was investigated using thermogravimetry at four different heating rates. The activation energies of the dehydration step of Mg3(PO4)2 · 8H2O were calculated through the isoconversional Ozawa and Kissinger-Akahira-Sunose (KAS) methods and iterative methods, which were found to be consistent and indicate a single mechanism. The possible conversion function of the dehydration reaction for Mg3(PO4)2 · 8H2O has been estimated through the Coats and Redfern integral equation, and a better kinetic model such as random nucleation of the “Avrami–Erofeev equation (A 3/2 model)” was found. The thermodynamic functions (ΔH*, ΔG*, and ΔS*) of the dehydration reaction are calculated by the activated complex theory and indicate that it is a non-spontaneous process when the introduction of heat is not connected.  相似文献   

20.
Series of (YBa2Cu3O7−δ )1−x (Al2O3) x samples have been prepared using solid state reaction method. Various amount of nano-sized Al2O3 particles (∼50 nm) were added with (x=0, 0.005, 0.01, 0.02, and 0.05). The microstructure and the morphology of the polycrystalline samples have been characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM). The magneto-transport properties of these samples were investigated using resistance–temperature (RT) and current–voltage (IV) characteristics. All samples showed an orthorhombic structure with a tendency to transformation to tetragonal phase at higher levels of nanoparticles addition. The morphology of the surface of pure samples reveals a considerable number of weak-links, randomly oriented and clean grain boundaries. While in samples with nano inclusions, grain boundaries were filled with nanosized particle and have less number of weak-links. Significant enhancement of the superconducting critical current density J c in applied magnetic field was observed due to nano Al2O3 inclusions. However, further increase in the value of x decreases the transition temperature T c and the critical current density J c . These results were interpreted in terms of the flux pinning mechanisms in granular superconducting networks which leads to a better basic understanding of the performance of YBCO system in high applied magnetic fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号