首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The secondary flow of PTT fluids in rectangular cross-sectional plane of microchannels under combined effects of electroosmotic and pressure driving forces is the subject of the present study. Employing second-order central finite difference method in a very refined grid network, we investigate the effect of electrokinetic and geometric parameters on the pattern, strength and the average of the secondary flow. In this regard, we try to illustrate the deformations of recirculating vortices due to change in the dimensionless Debye–Hückel and zeta potential parameters as well as channel aspect ratio. We demonstrate that, in the presence of thick electric double layers, significant alteration occurs in the secondary flow pattern by transition from favorable to adverse pressure gradients. Moreover, it is found that for polymer-electrolyte solutions with large Debye lengths, the secondary flow pattern and the shape of vortices are generally dependent upon the width-to-height ratio of the channel cross section. Also, the inspections of strength and average of secondary flow reveal that the sensitivity of these quantities with respect to the electrokinetic, geometric and rheological parameters increases by increasing the absolute value of velocity scale ratio. In this regard, utilizing the curve fitting of the results, several empirical expressions are presented for the strength and average of the secondary flow under various parametric conditions. The obtained relations with the other predictions for secondary flow are of high practical importance when dealing with the design of microfluidic devices that manipulate viscoelastic fluids.  相似文献   

2.
An analytical model is developed to account for the effect of streaming potential on the hydrodynamic dispersion of neutral solutes in pressure-driven flow. The pressure-driven flow and the resulting electroosmotic backflow exhibit coupled dispersion effects in nanoscale channels where the hydraulic diameter is on the order of the electrical double layer thickness. An effective diffusion coefficient for this regime is derived. The influence of streaming potential on hydrodynamic dispersion is found to be mainly dependent on an electrokinetic parameter, previously termed the “figure of merit”. Results indicate that streaming potential decreases the effective diffusion coefficient of the solute, while increasing the dispersion coefficient as traditionally defined. This discrepancy arises from the additional effect of streaming potential on average solute velocity, and discussed herein.  相似文献   

3.
Spatiotemporal deformations of the free charged surface of a thin electrolyte film undergoing a coupled electrokinetic flow composed of an electroosmotic flow (EOF) on a charged solid substrate and an electrophoretic flow (EPF) at its free surface are explored through linear stability analysis and the long-wave nonlinear simulations. The nonlinear evolution equation for the deforming surface is derived by considering both the Maxwell’s stresses and the hydrodynamic stresses. The electric potential across the film is obtained from the Poisson–Boltzmann equation under the Debye–Hückel approximation. The simulations show that at the charged electrolyte–air interface, the applied electric field generates an EPF similar to that of a large charged particle. The EOF near the solid–electrolyte interface and the EPF at the electrolyte–air interface are in the same (or opposite) directions when the zeta potentials at the two interfaces are of the opposite (or same) signs. The linear and nonlinear analyses of the evolution equation predict the presence of travelling waves, which is strongly modulated by the applied electric field and the magnitude/sign of the interface zeta potentials. The time and length scales of the unstable modes reduce as the sign of zeta potential at the two interfaces is varied from being opposite to same and also with the increasing applied electric field. The increased destabilization is caused by a reverse EPF near the free surface when the interfaces bear the same sign of zeta potentials. Flow reversal by EPF at the free surface occurs at smaller zeta potential of the free surface when the film is thicker because of less influence of the EOF arising at the solid–electrolyte boundary. The amplitude of the surface waves is found to be smaller when the unstable waves travel at a faster speed. The films can undergo pseudo-dewetting when the free surface is almost stationary under the combined influences of EPF and EOF. The free surface instability of the coupled EOF and EPF has some interesting implications in the development of micro/nano fluidic devices involving a free surface.  相似文献   

4.
We devise a mathematical model for analyzing the effects of spatio-temporal perturbations in zeta potential on electroosmotic transport in narrow fluidic confinements, considering thick electrical double layer limits. The spatial perturbations in zeta potential may be attributed to surface charge patterning, either designed or manifested as a natural artifact of the surface inhomogeneities. The time-dependent variations in zeta potential, as considered in this work, may stem from the temporal perturbations in the bulk ionic concentrations in the end-channel reservoirs or ‘wells’. Overcoming the simplifications routinely employed in the literature, we develop here an improved analytical formalism, without imposing any constraints on the magnitude of the zeta potential. Using these solutions, we highlight the possibilities of obtaining designed rotationalities in the flow structure with simultaneous spatial variations in the zeta potential and temporal variations in the well concentrations. We show that such combinations of spatial and temporal variations, in effect, render the flow system to be capable of shedding vortex structures that are not otherwise obtainable with spatial variations in zeta potential alone.  相似文献   

5.
The study is concerned with addressing hydrodynamic dispersion of an electroneutral non-adsorbed solute being transported by electroosmotic flow through a slit channel formed by walls with different zeta potentials. The analysis is conducted in terms of the plate height which, using the Van Deemter equation, can be expressed through the cross-sectional mean flow velocity, the solute molecular diffusion coefficient and a length scale parameter having meaning of the minimum achievable plate height and depending on the velocity distribution within the channel cross-section. The minimum plate height is determined by substituting distribution of electroosmotic velocity into the preliminary derived integral expression that is valid for any given velocity distribution within a slit channel cross-section. The electroosmotic velocity distribution within the slit channel cross-section is obtained by solving one-dimensional version of the Stokes equation accounting for electric force exerted on the local equilibrium electric space charge. The major obtained result is an analytical expression which represents the minimum plate height normalized by half of channel width as a function of two dimensionless parameters, namely, half of channel width normalized by the Debye length, and the ratio of the wall zeta potentials. The obtained result reveals a substantial increase in the minimum plate height compared with the case of equal wall zeta potentials. Different limiting cases of the obtained relationships are analyzed and possible applications are discussed.  相似文献   

6.
This work describes the steady-state transport of an electrolyte due to a stationary concentration difference in straight long channels under conditions of electroosmotic circulation. The electroosmotic flow is induced due to the slip produced at the charged channel walls. This flow is assumed to be compensated by a pressure-driven counterflow so that the net volume flow through the channel is exactly zero. Owing to the concentration dependence of electroosmotic slip, there is an involved coupling between the solute transfer, hydrodynamic flow and charge conservation. Nevertheless, for such a system the Taylor–Aris dispersion (TAD) theory is shown to be approximately applicable locally within an inner part of the channel for a wide range of Péclet numbers (Pe) irrespective of the concentration difference. Numerical simulations reveal only small deviations from analytical solutions for the inner part of the channel. The breakdown of TAD theory occurs within boundary regions near the channel ends and is related to the variation of the dispersion mechanism from the purely molecular diffusion at the channel ends to the hydrodynamic dispersion within the inner part of the channel. This boundary region is larger at the lower-concentration channel edge and its size increases nearly linearly with Pe number. It is possible to derive a simple analytical approximation for the inner profile of cross-section-averaged electrolyte concentration in terms of only few parameters, determined numerically. Such analytical approximations can be useful for experimental studies of concentration polarization phenomena in long microchannels.  相似文献   

7.
This work investigates the steady-state slip flow of viscoelastic fluids in hydrophobic two-dimensional microchannels under the combined influence of electro-osmotic and pressure gradient forcings with symmetric or asymmetric zeta potentials at the walls. The Debye–Hückel approximation for weak potential is assumed, and the simplified Phan-Thien-Tanner model was used for the constitutive equation. Due to the different hydrophobic characteristics of the microchannel walls, we study the influence of the Navier slip boundary condition on the fluid flow, by considering different slip coefficients at both walls and varying the electrical double-layer thickness, the ratio between the applied streamwise gradients of electric potential and pressure, and the ratio of the zeta potentials. For the symmetric case, the effect of the nonlinear Navier slip model on the fluid flow is also investigated.  相似文献   

8.
An analytical solution is derived for the micro-channel flow of viscoelastic fluids by combined electro-osmosis and pressure gradient forcing. The viscoelastic fluid is described by the Phan-Thien–Tanner model with due account for the near-wall layer depleted of macromolecules. This skimming layer is wider than the electric double layer (EDL) and leads to an enhanced flow rate relative to that of the corresponding uniform concentration flow case. The derived solution allows a detailed investigation of the flow characteristics due to the combined effects of fluid rheology, forcing strengths ratio, skimming layer thickness and relative rheology of the two fluids. In particular, when the EDL is much thinner than the skimming layer and simultaneously the viscosity of the Newtonian fluid inside this layer is much lower than that of the fluid outside, the flow is dominated by the characteristics of the Newtonian fluid. Outside these conditions, proper account of the various fluid layers and their properties must be considered for an accurate prediction of the flow characteristics. The analytical solution remains valid for the flow driven by a pressure gradient and its streaming potential, which is determined in the appendix.  相似文献   

9.
The electrophoretic motion of a charged spherical particle situated at an arbitrary position within a charged spherical cavity along the line connecting their centers is studied theoretically for the case of thin electric double layers. To solve the electrostatic and hydrodynamic governing equations, the general solutions are constructed using the two spherical coordinate systems based on the particle and cavity, and the boundary conditions are satisfied by a collocation technique. Numerical results for the electrophoretic velocity of the particle are presented for various values of the zeta potential ratio, radius ratio, and relative center-to-center distance between the particle and cavity. In the particular case of a concentric cavity, these results agree excellently with the available exact solution. The contributions from the electroosmotic flow occurring along the cavity wall and from the wall-corrected electrophoretic driving force to the particle velocity are equivalently important and can be superimposed due to the linearity of the problem. The normalized migration velocity of the particle decreases with increases in the particle-to-cavity radius ratio and its relative distance from the cavity center and increases with an increase in the cavity-to-particle zeta potential ratio. The boundary effects on the electrokinetic migration of the particle are significant and interesting.  相似文献   

10.
A general analytical solution is derived by using the Laplace transformation to describe transient reactive silica transport in a conceptualized 2-D system involving a single fracture embedded in an impervious host rock matrix. This solution differs from previous analyses in that it takes into account both hydrodynamic dispersion and advection of silica transport along the fracture, and hence takes the form of an infinite integral. Several illustrative calculations are undertaken to confirm that neglecting the dispersion term may lead to erroneous silica distribution along the fracture and within the host matrix, and the error becomes severe with a smaller rate of fluid flow in the fracture. The longitudinal dispersion is negligible only at steady state or when the flow rate in the fracture is higher. The analytical solution can serve as a benchmark to validate numerical models that simulate reactive mass transport in fractured porous media.  相似文献   

11.
A surface in contact with an aqueous solution is electrically characterized by the zeta potential. One way of determining indirectly the zeta potential of a surface is by measuring the streaming currents generated by a Poiseuille flow through a capillary channel with charged walls. We report measurements of streaming current in individual rectangular glass/PDMS microchannels with integrated miniaturized electrodes. Experiments performed using solutions with different salt concentrations and different electrode materials showed that the measured electrical current depends on the electrode material and in general differs from the real value of the streaming current. To determine the streaming current from the experimental data, an equivalent circuit model is proposed. The extracted value of the streaming current is proportional to the flow rate of electrolyte and the calculated glass/PDMS zeta potential scales linearly with the logarithm of the salt concentration. This work offers a thorough analysis of the effects that come into play during streaming current measurements and, in particular, it describes potential sources of error that can affect the streaming current measurements and suggestions on how to correct the measured values.  相似文献   

12.
Mustafa  M.  Ahmad  Rida  Hayat  T.  Alsaedi  A. 《Neural computing & applications》2018,29(2):493-499

This work is concerned with the numerical solution for rotating viscoelastic flow developed by an exponentially stretching impermeable surface. Temperature at the sheet is also assumed to vary exponentially. Energy equation involves the novel nonlinear radiation heat flux term. Suitable transformations are utilized to nondimensionalize the relevant boundary layer equations. Numerical solutions are developed by means of standard shooting approach. The results demonstrate that both rotation and viscoelasticity serve to reduce the hydrodynamic boundary layer thickness. Temperature function has a special S-shaped profile when the difference between wall and ambient temperatures is sufficiently large. Heat transfer coefficient at the surface diminishes when rotation parameter is increased. Current numerical computations are consistent with those of the existing studies in the literature.

  相似文献   

13.
Electro-osmotically driven displacement between two solutions having a conductivity mismatch is theoretically examined. Internal pressures induced by the conductivity mismatch can affect the propagation of the solution interface and the behavior of the transient current. Combining Ohm’s law and fluid mass conservation, we derive a coupled set of length-averaged equations accounting for how the electric current and the traveling distance of the solution interface vary with time, electric field, and the solution conductivities. Extension to successive displacements involving multiple solution zones is made to reveal non-monotonic and stagewise changes in transient currents. For the first time, critical roles of surface conductance on displacements in highly charged channels are unraveled. We show that if the lower conductivity solution has a greater valence than the higher one, the effective conductivity of the former can exceed that of the latter when the channel height is below some critical value. The resulting transient current behavior can turn opposite to that usually observed in the large-channel case, offering a new paradigm for gauging the importance of surface conductance in submicron charged channels. Possible impacts of diffusion smearing and hydrodynamic dispersion are also discussed by including the additional mixing zone into the analysis. Having shown good agreement with the existing experimental data, our analysis not only captures the natures of solution displacement by electro-osmotic flow (EOF), but also extends the applicability of the current monitoring method for measuring surface zeta potentials of microchannels.  相似文献   

14.
An analytical study is presented for the diffusioosmotic flow of an electrolyte solution in the fibrous medium constructed by an ordered array of parallel charged circular cylinders at the steady state. The prescribed electrolyte concentration gradient is constant but can be oriented arbitrarily with respect to the axes of the cylinders. The electric double layer surrounding each cylinder may have an arbitrary thickness relative to the radius of the cylinder. A unit cell model which allows for the overlap of the double layers of adjacent cylinders is employed to account for the effect of fibers on each other. The electrostatic potential distribution in the fluid phase of a cell is obtained by solving the linearized Poisson–Boltzmann equation, which applies to the case of low surface potential of the cylinders. The macroscopic electric field induced by the imposed electrolyte concentration gradient through the fluid phase in a cell is determined as a function of the radial position. A closed-form formula for the fluid velocity profile of the electrolyte solution due to the combination of electroosmotic and chemiosmotic contributions as a function of the porosity of the array of cylinders correct to the second order of their surface charge density or zeta potential is derived as the solution of a modified Navier–Stokes equation. The diffusioosmotic velocity can have more than one reversal in direction over a small range of the zeta potential. For a given electrolyte concentration gradient in a cell, the fluid flow rate does not necessarily increase with an increase in the electrokinetic radius of the cylinder, which is the cylinder radius divided by the Debye screening length. The effect of the radial distribution of the induced axial electric field in the double layer on the diffusioosmotic flow is found to be of dominant significance in most practical situations.  相似文献   

15.
A theoretical study is presented for the electrophoretic motion of a spherical particle in an electrolyte solution along the axis of a circular microtube, whose wall may be either insulating or prescribed with the linear far-field electric potential distribution. The electric double layers adjoining the charged particle surface and tube wall are finitely thin, and the polarization of the diffuse layer at the particle surface is allowed. The general solutions to the electrostatic and hydrodynamic governing equations are constructed in combined cylindrical and spherical coordinates, and the boundary conditions are enforced on the tube wall by the Fourier transform and along the particle surface by a collocation method. The collocation results for the electrophoretic mobility of the confined particle, which agree well with the asymptotic formulas obtained by using a method of reflections, are obtained for various values of the particle, wall, and solution characteristics. An insulating tube wall and a tube wall with the far-field potential distribution affect the electrophoresis of the particle quite differently. Although the particle mobility in a tube with uncharged wall in general decreases with an increase in the particle-to-tube radius ratio a/b, it can increase with an increase in a/b as this ratio is close to unity for some cases because of the competition between the wall effects of hydrodynamic retardation and possible electrochemical enhancement on the particle migration. When the zeta potential of the tube wall is comparable to that of the particle, the electroosmotic flow of the bulk fluid induced by the tube wall dominates the electrokinetic migration of the particle.  相似文献   

16.
The present study is an analysis of pressure-driven electrokinetic flows in hydrophobic microchannels with emphasis on the slip effects under coupling of interfacial electric and fluid slippage phenomena. Commonly used linear model with slip-independent zeta potential and the nonlinear model at limiting (high-K) condition with slip-dependent zeta potential are solved analytically. Then, numerical solutions of the electrokinetic flow model with zeta potential varying with slip length are analyzed. Different from the general notion of “the more hydrophobic the channel wall, the higher the flowrate,” the results with slip-independent and slip-dependent zeta potentials both disclose that flowrate becomes insensitive to the wall hydrophobicity or fluid slippage at sufficiently large slip lengths. Boundary slip not only assists fluid motion but also enhances counter-ions transport in EDL and, thus, results in strong streaming potential as well as electrokinetic retardation. With slip-dependent zeta potential considered, flowrate varies non-monotonically with increasing slip length due to competition of the favorable and adverse effects with more complicated interactions. The influence of the slip on the electrokinetic flow is eventually nullified at large slip lengths for balance of the counter effects, and the flowrate becomes insensitive to further hydrophobicity of the microchannel. The occurrence of maximum, minimum, and insensitivity on the flowrate-slip curves can be premature at a higher zeta potential and/or larger electrokinetic separation distance.  相似文献   

17.
A closed-form solution is presented for modeling the coupled stress-flow-transport processes along a single fracture embedded in a porous rock matrix. Necessary assumptions were made to simplify the subject into a two-dimensional (2D) problem, considering the changes of fracture aperture and matrix porosity under various stress conditions. The cubic law was assumed to be valid for the fluid flow in the fracture, with an impermeable rock matrix. For transport mechanisms, advective transport along the fracture, longitudinal hydrodynamic dispersion in the flow direction, and the matrix diffusion were considered in three different transport models under constant concentration or constant flux (Danckwerts') inlet boundary conditions. This analytical solution can be used as a constitutive model, or as an example for validation of similar constitutive models, for modeling the coupled hydro-mechanical-chemical (HMC) processes in fracture networks of crystalline rocks. The influences of stress/deformation processes on different transport mechanisms in a single fracture under different inlet boundary conditions were studied for the first time. The results show that changes of fracture, as controlled by a combination of normal closure and shear dilatancy, have a significant influence on the solute concentration distribution both along the fracture and in the rock matrix, as well as on the solute residence/breakthrough time, especially when shear-induced dilatancy occurs. Under compressions, the decreasing matrix porosity slightly increases the solute concentration along the fracture and in the rock matrix.  相似文献   

18.
The phenomenon of enrichment of charged analytes due to the presence of an electric field barrier at the micro-nanofluidic interconnect can be harnessed to enhance sensitivity and limit-of-detection in sensor instruments. We present a numerical analysis framework to investigate two critical electrokinetic phenomena underlying the experimental observation in Plecis et al. (Micro Total Analysis Systems, pp 1038–1041, 2005b): (1) ion transport of background electrolytes (BGE) and (2) enrichment of analytes in the micro-nanofluidic devices that operate under hydrodynamic flow. The analysis is based on the full, coupled solution of the Poisson–Nernst–Planck (PNP) and Naviér–Stokes equations, and the results are validated against analytical models of simple canonical geometry. Parametric simulation is performed to capture the critical effects of pressure head and BGE ion concentration on the electrokinetics and ion transport. Key findings obtained from the numerical analysis indicate that the hydrodynamic flow and overlapped electrical double layer induce concentration–polarization at the interfaces; significant electric field barrier arising from the Donnan potential forms at the micro–nano interfaces; and streaming potential and overall potential are effectively established across the micro-nanofluidic device. The simulation to examine analyte enrichment and its dependence on the hydrodynamic flow and analyte properties, demonstrates that order-of-magnitude enrichment can be achieved using properly configured hydrodynamic flow. The results can be used to guide practical design and operational protocol development of novel micro-nanofluidic interconnect-based analyte preconcentrators.  相似文献   

19.
This study compares three common microfluidic mixing techniques: electroosmosis with patterned zeta potential, hydrodynamic focusing and physical constrictions. All three techniques provide a higher degree of mixing than a comparable channel without a mixer, but at the cost of higher power requirements. Of the three techniques, the electroosmotic mixer requires the greatest amount of power to produce a high degree of mixing, unless the channels are much smaller than those typical for microfluidic devices. The power requirement of the physical constriction mixer may be lowered by using multiple constrictions, with only a small loss in mixing effectiveness. The physical constriction mixer is recommended, since it has power requirements similar to the hydrodynamic focusing mixer but only requires the use of a single pump. However, if the mixing liquids contain particulates, a hydrodynamic focusing mixer may be preferred, because the physical constriction mixer may clog, depending on the particulate size.  相似文献   

20.
In this article, we investigate the effect of channel sidewalls on the transport of neutral samples through rectangular conduits under pressure-driven flow and small zeta potential conditions. Our analyses show that while these structures can significantly reduce the streaming potential in small aspect ratio rectangular channels, they introduce a very minor variation in the sample velocity with the extent of Debye layer overlap in the system. Moreover, the increase in sample dispersion due to the channel side-regions has been shown to be nearly independent of the Debye layer thickness and very comparable to that reported under simple pressure-driven flow conditions. Interestingly however, a simple one-dimensional (1D) model that decouples band broadening arising due to diffusional limitations across the depth and width of the rectangular conduit has been shown to capture the predicted dependence of the Taylor–Aris dispersion coefficient on the channel aspect ratio under all operating conditions with less than 3% error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号