首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
时栅转台精度的标定是时栅产业化过程中非常重要的一道工序,是时栅转台精度和可靠性体现。针对传统的标定系统采用激光干涉仪、光电自准直仪和金属多面体,人工操作效率低,可靠性差,提出用自制的数控控制箱结合嵌入式技术,开发了一种时栅转台自动标定系统。该系统以高精度的海德汉圆光栅RCN8510作为基准量仪,双微控制器与上位机为基础,形成双闭环控制结构,实现了实时在线误差修正与补偿。实验结果表明:采用双闭环控制系统时栅转台标定系统具有较高的稳定性,提高了时栅转台标定效率,时栅转台的精度达到2.4″。  相似文献   

2.
针对传感器安装偏心、使用环境变化等因素造成时栅转台精度降低的问题,提出了由多面棱体和自准直仪对误差进行标定,并利用谐波修正技术进行误差修正的时栅转台自动标定系统.系统以多面棱体和自准直仪高精度测量仪器作为测量基准,以ARM处理器为核心对步进电机进行闭环控制,实现转台的精确定位,且能够进行数据采集和误差处理.经实验证明:与手动标定方式相比,该标定系统不仅效率高而且标定后的时栅转台测量系统分度精度可达±1.3”.  相似文献   

3.
提出一种在线自动检测时栅转台误差、辨识误差模型系数和误差补偿的方法。该系统由高精度的基准量仪圆光栅、微控制器与上位机组成。在对极点8个待定参数和对极内20个待定参数分别进行傅立叶变换的参数辨识,得到辨识误差模型的系数,实现了实时在线误差补偿。为了检验在线自动标定效果,利用光电自准直仪与基于参数辨识的在线自动标定系统进行对比实验。实验结果表明,采用傅立叶变换的参数辨识,提高了时栅转台标定精度与标定效率,时栅转台的精度达到2.8″。  相似文献   

4.
为进一步提高时栅角位移测量系统的测量精度,降低生产成本和生产时间,根据时栅传感器的误差组成和误差特性,提出了一种新的误差补偿方法;同时建立了基于傅里叶函数的误差分离模型。该补偿方法将沿空间正弦分布的非线性误差转化成线性误差,并运用最小二乘法理论对系统的误差进行补偿。通过试验与测试证明,采用该方法进行误差补偿可以大幅度提高时栅角位移测量系统的测量精度。  相似文献   

5.
为了解决手动标定方法效率低、精度低的缺点,采用自动控制伺服电机分度的方法来实现倾角传感器的自动标定,并采用闭环控制系统和角度误差补偿与温度补偿方法来保证标定的精度。自动标定系统中利用单片机技术整合数据和控制系统,并通过软件编程将系统各部分整合起来,不但标定精度高,而且,工作效率也得到了提高。  相似文献   

6.
九轴的姿态测量单元包括加速度计、磁力计和陀螺仪,它采用微机电加工工艺,价格低廉但精度较差.为了获得更好的滤波稳定性和估计精度,基于补偿卡尔曼滤波原理,讨论了姿态估计算法的实现.具体过程如下:基于补偿卡尔曼滤波原理,讨论九轴测量信息的融合方法;利用加速度计和磁力计估算姿态初始值;使用手动转台实现静态标定,纠正零偏;使用高精度陀螺仪STIM210实现动态标定,设置滤波系数.结果表明,估计算法具有良好性能.  相似文献   

7.
《工矿自动化》2016,(3):31-35
针对现有的应变测量仪标定方式采用单通道手动操作,存在标定过程费时费力、效率较低等问题,设计了一种以Cortex-M3为控制核心的自动标定系统,详细介绍了该系统的硬件和软件设计。该系统可将标准电阻信号输出加载到被标定电桥的输入端,比对被标定电桥的输出与理论值,自动计算被标定电桥的精度。实验结果表明,该系统能够有效完成自动标定任务,标定精度达到0.5%。  相似文献   

8.
微机电系统(MEMS)陀螺仪的测量误差是影响微惯性导航系统精度的重要因素.为了提高微惯性导航系统的精度,提出了一种利用三轴转台完成MEMS陀螺仪的标定方法.根据MEMS陀螺仪的误差模型,设计了标定试验方案和误差模型参数的辨识方法,并通过小波阈值去噪的方法对陀螺的输出数据进行去噪处理.试验与仿真对比分析结果表明:经误差补偿和去噪后MEMS陀螺仪的测量精度提高1~2个数量级,同时验证了该标定方法的正确性、有效性.  相似文献   

9.
微惯性姿态测量系统机械精度不高、系统误差和随机误差干扰多样和传统标定计算复杂。针对这些问题,提出一种新型微惯性姿态测量系统误差标定的方法。通过对姿态测量系统的不同微惯性器件进行分析,有针对性的建立系统误差补偿模型。再设置实验转台给定系统不同速率及角度,最后利用最小二乘法、六位置标定法分别进行系统误差参数求解,经解算标定出零位漂移、刻度因子误差和安装误差角。最后通过标定前后对比测试实验,证明了该方法原理简单、易于实现,能较好地补偿微惯性姿态测量系统的系统误差,提高姿态测量精度。  相似文献   

10.
在工业现场,角位移传感器校准受特殊条件的限制,很难用标准器进行密集误差采样来提高精度。针对该问题提出了一种稀疏误差采样及补偿方法。在分析时栅角位移传感器的感应信号的基础上,提出稀疏采样第1个对极内细分误差+对极点零位误差的测补方式,给出用激光干涉仪获取零位和细分误差的方法及采用稀疏采样的误差补偿模型进行补偿的具体过程。以72对极时栅角位移传感器为对象进行研究,实验结果表明:该方法充分剔除了零位误差且补偿了细分误差,在稀疏采样的条件下即可实现整周范围的有效补偿,大大提高了修正效率和测量精度,时栅传感器的精度达到2.69″。  相似文献   

11.
以实验室自行研制的光纤陀螺及其捷联惯导系统为基础,从光纤陀螺的传统标定模型入手,在进行角加速度补偿前,通过与转台激发出的角速度与光纤陀螺测量值做对比,得出系统在有大角加速度的情况下,光纤陀螺测量值与转台实际角速度值会有很大的误差,光纤捷联惯导系统姿态误差会在很短的时间内被放大。角加速度误差补偿后,在有明显角加速度的情况下,光纤陀螺能够准确测量转台的角加速度,捷联惯导系统解算精度明显提高。  相似文献   

12.
为提高三轴加速度计测量精度,根据其误差来源和产生机理,建立了误差模型;通过对误差模型分析,指出三轴加速度计输出轨迹符合椭球假设,提出一种椭球拟合法确定误差模型,实现对加速度计误差补偿。三轴加速度计捷联安装到三自由度转台进行误差标定和补偿,实验结果表明:加速度计最大、最小绝对误差可以减小100倍左右,精度达到10-3m/s2。该方法对采集数据的姿态没有太高要求,补偿效果显著,简单易行。  相似文献   

13.
惯性器件误差是影响捷联惯性导航系统(SINS)精度的主要原因之一,任何由加速度计和陀螺构建的SINS在使用之前都须进行精确标校,以建立起惯性器件静态误差补偿模型。首先根据三轴加速度计组件的输出建立起加速度计输出模型;然后利用三角谐波的正交特性,设计了1 g重力场下的多位置转台翻滚试验,分离出加速度计组件的各项静态误差系数的解析表达式;最后,分析了由基准误差引入的参数标定误差。利用双轴位置转台对标定方法进行验证,结果证明此方法能够有效标定出三轴加速度计组件的刻度因数、交叉耦合系数和零位偏置,满足系统设计指标要求。  相似文献   

14.
李光春  苏沛东  严平 《测控技术》2015,34(8):142-145
现场条件下惯组的标定精度及标定速度直接影响惯性导航系统的使用.基于双轴旋转框架的捷联惯组快速标定法,将带有旋转框架的惯组安装在载体上,只需一次通电后控制双轴框架合理转位,实现惯组误差参数的快速辨识.结果表明6位置快速标定法,可以满足捷联惯组现场标定精度要求且在30 min内即可完成惯组标定,尤其是降低了现场标定时对高精度三轴转台的依赖,极大地提高了器件测试的灵活性.  相似文献   

15.
旋转变压器的精度直接影响角位置测量系统的精度,旋转变压器的误差主要分为零位误差和幅值误差。经过分析和研究,提出了一种误差补偿方法,通过二次曲线拟合的方法来实现对误差的补偿,该方法通过在精密转台仪器上实验,可以有效的提高传感器的测量精度。  相似文献   

16.
在分析六自由度电动转台控制系统工作原理的基础上,针对驱动电动台的永磁同步电机采用传统PID控制电动台速度时,会产生周期性的速度偏差,致使其控制精度大大降低这一问题,通过对永磁同步电机的转速环进行数学建模,提出利用重复控制理论来设计电动台的速度补偿系统的思想,然后对传统PID和重复控制补偿系统2种控制器进行了设计与仿真.仿真结果表明,经过几个周期后,具有重复补偿的控制系统的跟踪误差逐渐减小,而传统的PID控制器则一直保持较大的跟踪误差.在Matlab/Simulink xPC Target实时开发环境下建立电动台速度实时控制系统,采用快速原型控制方式具有系统组建方便、成本低、开发周期短等特点.试验表明重复控制补偿系统对转台的速度控制具有很大的改进,从而为电动台的精确控制奠定了基础.  相似文献   

17.
设计了一种基于单片STM32F4芯片的时栅位移传感器信号处理系统,将驱动电源、信号采样以及数据处理与误差补偿集成在一片芯片中完成,采用数字频率直接合成(DDS)技术进行激励源的设计,利用输入捕获方式进行高频时钟脉冲插补来采集测量信号,由芯片集成的单周期DSP指令部件完成数据计算,并采用傅氏级数谐波修正技术来进行误差修正。实验表明:采用该系统后,72对极时栅误差峰峰值为3.29”,在保证精度的同时实现了时栅信号处理系统的集成化、小型化,降低了生产成本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号