首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Direct growth of chirality‐controlled single‐walled carbon nanotubes (SWNTs) with metal catalyst free strategy, like cloning or epitaxial growth, has suffered from the low efficiency. The underlying problem is the activation of seed edge. Here an unexpectedly efficient microwave‐assisted pathway to regenerate SWNTs from carbon fragments on SiO2/Si substrate is demonstrated via Raman spectroscopy and atomic force microscope (AFM) characterization. In this attempt, microwave irradiation provides fast heating to remove polar groups bonded to carbon nanotubes and reduce the spontaneous closure of tubes’ open ends. The survived SWNT and carbon fragments connected to it after plasma treatment are simply microwaved and then they serve as the template for regeneration. Scanning electron microscope and AFM characterizations indicate that the efficiency of the regeneration can reach 100%. And the regenerated SWNT has been proved without any change in chirality compared to the original SWNT. Electrical measurements on regenerated carbon nanotube films indicate 1 and 2 times increase in on/off ratio and on‐state current respectively than original carbon nanotube films obtained from solution‐phase separation, confirming the improvement of SWNT's quality. The microwave‐assisted regeneration is found to be highly effective and would be applied to improve the cloning efficiency of carbon nanotubes potentially.  相似文献   

2.
Carbon single-wall nanotubes (SWNTs) have highly unique electronic, mechanical and adsorption properties, making them interesting for a variety of applications. Raman spectroscopy has been demonstrated to be one of the most important methods for characterizing SWNTs. For example, Raman spectroscopy may be employed to differentiate between metallic and semi-conducting nanotubes, and may also be employed to determine SWNT diameters and even the nanotube chirality. Single-wall carbon nanotubes are generated in a variety of ways, including arc-discharge, laser vaporization and various chemical vapor deposition (CVD) techniques. In all of these methods, a metal catalyst must be employed to observe SWNT formation. Also, all of the current synthesis techniques generate various non-nanotube carbon impurities, including amorphous carbon, fullerenes, multi-wall nanotubes (MWNTs) and nano-crystalline graphite, as well as larger micro-sized particles of graphite. For any of the potential nanotube applications to be realized, it is, therefore, necessary that purification techniques resulting in the recovery of predominantly SWNTs at high-yields be developed. It is, of course, equally important that a method for determining nanotube wt.% purity levels be developed and standardized. Moreover, a rapid method for qualitatively measuring nanotube purity could facilitate many laboratory research efforts. This review article discusses the application of Raman spectroscopy to rapidly determine if large quantities of carbon impurities are present in nanotube materials. Raman spectra of crude SWNT materials reveal tangential bands between 1500-1600 cm(-1), as well as a broad band at approximately 1350 cm(-1), attributed to a convolution of the disorder-induced band (D-band) of carbon impurities and the D-band of the SWNTs themselves. Since the full-width-at-half-maximum (FWHM) intensity of the various carbon impurity D-bands is generally much broader than that of the nanotube D-band, an indication of the SWNT purity level may be obtained by simply examining the line-width of the D-band. We also briefly discuss the effect of nanotube bundling on SWNT Raman spectra. Finally, sections on employing Raman spectroscopy, and Raman spectroscopy coupled with additional techniques, to identify the separation and possible isolation of a specific nanotube within purified SWNT materials is provided. Every SWNT can be considered to be a unique molecule, with different physical properties, depending on its (n, m) indices. The production of phase-pure (n, m) SWNTs may be essential for some nanotube applications.  相似文献   

3.
Polyethylene crystallization under shear has been studied in the presence of single-wall, few-wall, and multiwall carbon nanotubes (SWNT, FWNT, and MWNT). Polyethylene crystal d-spacings for (110) and (200) planes in polyethylene/carbon nanotubes (CNT) are smaller than in the control polyethylene without CNT and the polymer chain is oriented along the CNT axis. The single-wall carbon nanotube templated polyethylene crystals do not redissolve in boiling xylenes; instead, the chain morphology transforms to an amorphous conformation but remains oriented along the nanotube axis. SWNT crystal peaks were also observed in polyethylene/SWNT fibers.  相似文献   

4.
The noise characteristics of randomly networked single walled carbon nanotubes grown directly by plasma enhanced chemical vapor deposition with field effect transistor. Geometrical complexity due to the large number of tube-tube junctions in the nanotube network is expected to be one of the key factors for the noise power of 1/f dependence. We investigated low frequency noise as a function of channel length (2-10 microm) and found that increased with longer channel length. Percolational behaviors of nanotube network that differs from ordinary semiconducting and metallic materials can be characterized by a geometrical picture with electrical homo- and hetero-junctions. Fixed nanotube density provides a test conditions to evaluate the contributions of junctions as a noise center. Hooge's empirical law is applied to investigate the low frequency noise characteristics of single walled carbon nanotube random network transistors. The noise power shows the dependence of the transistor channel length. It is understood that nanotube/nanotube junctions act as a noise center. However, the differences induced by channel length in the noise power are observed as not so significant. We conclude that tolerance of low frequency noise is important property for SWNT networks as an electronic device application.  相似文献   

5.
We show that aqueous dispersions of single-walled carbon nanotubes (SWNTs), prepared with the aid of nucleic acids (NAs) such as RNA or DNA, can be separated into fractions using agarose gel electrophoresis. In a DC electric field, SWNT/NA complexes migrate in the gel in the direction of positive potential to form well-defined bands. Raman spectroscopy as a function of band position shows that nanotubes having different spectroscopic properties possess different electrophoretic mobilities. The migration patterns for SWNT/RNA and SWNT/DNA complexes differ. Parallel elution of the SWNT/NA complexes from the gel during electrophoresis and subsequent characterization by AFM reveals differences in nanotube diameter, length and curvature. The results suggest that fractionation of nanotubes can be achieved by this procedure. We discuss factors affecting the mobility of the nanotube complexes and propose analytical applications of this technique.  相似文献   

6.
Carbon nanotube ink chemistry and the proper formulation are crucial for direct-write printing of nanotubes. Moreover, the correct surface chemistry of the self-assembled monolayers that assist the direct deposition of carbon nanotubes onto the substrate is equally important to preserve orientation of the printed carbon nanotubes. We report that the successful formulation of two single walled carbon nanotube (SWNT) inks yields a consistent, homogenous printing pattern possessing the requisite viscosities needed for flow through the microcapillary nozzles of the inkjet printer with fairly modest drying times. The addition of an aqueous sodium silicate allows for a reliable method for forming a uniform carbon nanotube network deposited directly onto unfunctionalized surfaces such as glass or quartz via inkjet deposition. Furthermore, this sodium silicate ingredient helps preserve applied orientation to the printed SWNT solution. Sheet resistivity of this carbon nanotube ink formula printed on quartz decreases as a function of passes and is independent of the substrate. SWNTs were successfully patterned on Au. This amine-based surface chemistry dramatically helps improve the isolation stabilization of the printed SWNTs as seen in the atomic force microscopy (AFM) image. Lastly, using our optimized SWNT ink formula and waveform parameters in the Fuji materials printer, we are able to directly write/print SWNTs into 2D patterns. Dried ink pattern expose and help orient roped carbon nanotubes that are suspended in ordered arrays across the cracks.  相似文献   

7.
Continued growth is a way of growing nanotubes targeted to produce continuous and chirality-controlled single-walled carbon nanotube (SWNT) materials. This growth method strongly depends on efficient preparation of open-ended SWNT substrates. Nanoscopically flat open-ended SWNT substrates have been prepared by cutting the SWNT spun fiber with a focused ion beam cutting technique and followed by etching schemes for cleaning amorphous carbon and opening the ends of the SWNTs. The open ends were effectively characterized through selective etch back of open SWNT ends by carbon dioxide gas at 950 degrees C. High density continued growth was demonstrated from these nanoscopically flat open-ended substrates.  相似文献   

8.
Single‐walled carbon nanotubes (SWNTs) are widely thought to be a strong contender for next‐generation printed electronic transistor materials. However, large‐scale solution‐based parallel assembly of SWNTs to obtain high‐performance transistor devices is challenging. SWNTs have anisotropic properties and, although partial alignment of the nanotubes has been theoretically predicted to achieve optimum transistor device performance, thus far no parallel solution‐based technique can achieve this. Herein a novel solution‐based technique, the immersion‐cum‐shake method, is reported to achieve partially aligned SWNT networks using semiconductive (99% enriched) SWNTs (s‐SWNTs). By immersing an aminosilane‐treated wafer into a solution of nanotubes placed on a rotary shaker, the repetitive flow of the nanotube solution over the wafer surface during the deposition process orients the nanotubes toward the fluid flow direction. By adjusting the nanotube concentration in the solution, the nanotube density of the partially aligned network can be controlled; linear densities ranging from 5 to 45 SWNTs/μm are observed. Through control of the linear SWNT density and channel length, the optimum SWNT‐based field‐effect transistor devices achieve outstanding performance metrics (with an on/off ratio of ~3.2 × 104 and mobility 46.5 cm2/Vs). Atomic force microscopy shows that the partial alignment is uniform over an area of 20 × 20 mm2 and confirms that the orientation of the nanotubes is mostly along the fluid flow direction, with a narrow orientation scatter characterized by a full width at half maximum (FWHM) of <15° for all but the densest film, which is 35°. This parallel process is large‐scale applicable and exploits the anisotropic properties of the SWNTs, presenting a viable path forward for industrial adoption of SWNTs in printed, flexible, and large‐area electronics.  相似文献   

9.
We observed that single-walled carbon nanotube (SWNT) was aligned in the presence of TTF This alignment was induced by a specific interaction between SWNT and tetrathiafulvalene (TTF), a well-known organic donor. The interaction between the two molecules can be explained by a charge-transfer, which was confirmed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The binding energies of S (2P1/2) and S (2P3/2) were shifted from 163.0 eV and 164.1 eV to 163.9 eV and 165.1 eV, respectively. In Raman spectra of the SWNT-TTF, three peaks of SWNT in radial breathing mode were also upshifted by 4-5 cm(-1). The charge-transfer interaction also contributed in modifying the electronic structure of SWNT and furthermore enhanced the electrical conductivity of SWNT. A more conductive thin film was fabricated using the SWNT-TTF Four-probe measurement revealed that the surface resistance of the SWNT-TTF film was reduced to 4.359 omega at room temperature while that of SWNT film was 6.894 omega. These results enable carbon nanotubes to be utilized more for practically for industrial applications in fabricating peculiar nano-sized building blocks.  相似文献   

10.
A model of the arc discharge used for a single wall carbon nanotube (SWNT) synthesis is developed. Coupling solution of the non-equilibrium, Knudsen layer, with hydrodynamic layer and discharge column provides self-consistent solution for the ablation rate and plasma parameter distribution. It is predicted that the interelectrode gap decreases with the background pressure increase. Conditions for single wall carbon nanotube formation in the arc discharge method of nanotube synthesis are described. Carbon nanotube seed formation and charging in the interelectrode gap are found to be very important effects that may alter carbon nanotube formation in the cathode region. This model predicts that the long carbon nanotubes in the high pressure Helium environment can be deposited on the cathode surface. Model predictions are found to be in agreement with experiment.  相似文献   

11.
Single walled carbon nanotubes (SWNTs) suspended above the substrate can be fabricated simply and rapidly by chemical vapour deposition growth over pre-grown multi-walled carbon nanotubes (MWNTs). SWNTs are suspended either on a randomly organized carbon nanotube network on an unpatterned substrate, or between organized pillars made from vertically aligned nanotube forests on a patterned substrate. All nanotubes are produced during a single growth run using a two step growth technique. This approach enables the fabrication of laterally suspended SWNT networks which are well suited for optical applications.  相似文献   

12.
In this paper, we explore the use of two organic materials that have been touted for use as photovoltaic (PV) materials: inherently conducting polymers (ICPs) and carbon nanotubes (CNTs). Due to these materials' attractive features, such as environmental stability and tunable electrical properties, our focus here is to evaluate the use of polyaniline (PANI) and single wall carbon nanotube (SWNT) films in heterojunction diode devices. The devices are characterized by electron microscopy (film morphology), current-voltage characteristics (photovoltaic behavior), and UV/visible/NIR spectroscopy (light absorption). We have found that both PANI and SWNT can be utilized as photovoltaic materials in a simple bilayer configuration with n-type Silicon: n-Si/PANI and n-Si/SWNT. It was our aim to determine how photovoltaic performance was affected utilizing both PANI and SWNT layers in multilayer devices: n-Si/PANI/SWNT and n-Si/SWNT/PANI. The short-circuit current density increased from 4.91 mA/cm(2) (n-Si/PANI) to 12.41 mA/cm(2) (n-Si/PANI/SWNT), while an increase in power conversion efficiency by ~91% was also observed. In the case of n-Si/SWNT/PANI and its corresponding device control (n-Si/SWNT), the short-circuit current density was decreased by an order of magnitude. The characteristics of the device were affected by the architecture and the findings have been attributed to the more effective transport of holes from the PANI to SWNT and less effective transport of holes from PANI to SWNT in the respective multilayer devices.  相似文献   

13.
We present theoretical and experimental studies of Schottky diodes that use aligned arrays of single-walled carbon nanotubes. A simple physical model, taking into account the basic physics of current rectification, can adequately describe the single-tube and array devices. We show that for as-grown array diodes, the rectification ratio, defined by the maximum-to-minimum-current-ratio, is low due to the presence of metallic-single-walled nanotube (SWNT) shunts. These tubes can be eliminated in a single voltage sweep resulting in a high rectification array device. Further analysis also shows that the channel resistance, and not the intrinsic nanotube diode properties, limits the rectification in devices with channel length up to 10 μm.  相似文献   

14.
We have used Raman spectroscopy to study the behavior of double-walled carbon nanotubes (DWNT) under hydrostatic pressure. We find that the rate of change of the tangential mode frequency with pressure is higher for the sample with traces of polymer compared to the pristine sample. We have performed classical molecular dynamics simulations to study the collapse of single (SWNT) and double-walled carbon nanotube bundles under hydrostatic pressure. The collapse pressure (pc) was found to vary as 1/R3, where R is the SWNT radius or the DWNT effective radius. The bundles showed approximately 30% hysteresis and the hexagonally close packed lattice was completely restored on decompression. The pc of a DWNT bundle was found to be close to the sum of its values for the inner and the outer tubes considered separately as SWNT bundles, demonstrating that the inner tube supports the outer tube and that the effective bending stiffness of DWNT, D(DWNT) - 2D(SWNT).  相似文献   

15.
For nanotube-based electronics to become a viable alternative to silicon technology, high-density aligned carbon nanotubes are essential. In this paper, we report the combined use of low-pressure chemical vapor deposition and stacked multiple transfer to achieve high-density aligned nanotubes. By using an optimized nanotube synthesis recipe, we have achieved high-density aligned carbon nanotubes with density as high as 30 tubes/μm. In addition, a facile stacked multiple transfer technique has been developed to further increase the nanotube density to 55 tubes/μm. Furthermore, high-performance submicron carbon nanotube field-effect transistors have been fabricated on the high-density aligned nanotubes. Before removing the metallic nanotubes by electrical breakdown, the devices exhibit on-current density of 92.4 μA/μm and normalized transconductance of 13.3 μS/μm. Moreover, benchmarking with the aligned carbon nanotube transistors in the literature indicates that our devices exhibit the best performance so far, which is attributed to both the increased nanotube density and scaling down of channel length. This study shows the great potential of using such high-density aligned nanotubes for high performance nanoelectronics and analog/RF applications.  相似文献   

16.
The electrical transport in multiwalled carbon nanotubes is shown to be ballistic at room temperature with mean free paths on the order of tens of microns. The measurements are performed both in air and in the transmission electron microscope by contacting the free end of a nanotube pointing out of a fiber to a liquid metal and measuring the dependence of the nanotube resistance between the contacts. For a specific representative nanotube the resistance per unit length is found to be Rt = 31 +/- 61 omega/micron and the contact resistance with the liquid metal, Rc = 165 +/- 55 omega microns, corresponding to a mean free path l = 200 microns. Current-to-voltage characteristics are in accord with the electronic structure. The nanotubes survive high currents (up to 1 mA, i.e., current density on the order of 10(9) A/cm2). In situ electron microscopy shows that a relatively large fraction of the nanotubes do not conduct (even at high bias), consistent with the existence of semiconducting nanotubes. Discrepancies with other measurements are most likely due to damage caused to the outer layer(s) of the nanotubes during processing. The measured mean free path of clean, undamaged arc-produced multiwalled carbon nanotubes is several orders of magnitude greater than that for metals, making this perhaps the most significant property of carbon nanotubes.  相似文献   

17.
The current percolation in polymer‐sorted semiconducting (7,5) single‐walled carbon nanotube (SWNT) networks, processed from solution, is investigated using a combination of electrical field‐effect measurements, atomic force microscopy (AFM), and conductive AFM (C‐AFM) techniques. From AFM measurements, the nanotube length in the as‐processed (7,5) SWNTs network is found to range from ≈100 to ≈1500 nm, with a SWNT surface density well above the percolation threshold and a maximum surface coverage ≈58%. Analysis of the field‐effect charge transport measurements in the SWNT network using a 2D homogeneous random‐network stick‐percolation model yields an exponent coefficient for the transistors OFF currents of 16.3. This value is indicative of an almost ideal random network containing only a small concentration of metallic SWNTs. Complementary C‐AFM measurements on the other hand enable visualization of current percolation pathways in the xy plane and reveal the isotropic nature of the as‐spun (7,5) SWNT networks. This work demonstrates the tremendous potential of combining advanced scanning probe techniques with field‐effect charge transport measurements for quantification of key network parameters including current percolation, metallic nanotubes content, surface coverage, and degree of SWNT alignment. Most importantly, the proposed approach is general and applicable to other nanoscale networks, including metallic nanowires as well as hybrid nanocomposites.  相似文献   

18.
Carbon nanotube materials can now be produced in macroscopic quantities. However, the raw material has a disordered structure and unsorted size, which restrict investigations of both the properties and applications of the nanotubes. In this paper, an alternative approach to the synthesis of mono-sized and parallel-aligned single wall carbon nanotubes (SWCNs) is reported. The SWCNs are formed in 1 nm-sized channels of aluminophosphate zeolite crystallites by pyrolysis of tripropylamine molecules. As verified by tunnel electron microscopy and micro-Raman scattering, the SWNT is of zigzag structure. Electrical transport properties of the SWNT are measured in the temperature range of 0·3K∼300K. The temperature-dependent dc conductivity shows that the SWNT is an intrinsic semiconductor with a narrow band-gap of 52 meV. The well-aligned and mono-sized SWCNs allow us to make more controlled characterization as well as open a door to potential nano-technological application for the novel electronic nanotube system.  相似文献   

19.
Kilina S  Ramirez J  Tretiak S 《Nano letters》2012,12(5):2306-2312
Using time-dependent density functional theory, we found that chemical functionalization at low concentrations of single-walled carbon nanotubes (SWNTs) locally alters the π-conjugated network of the nanotube surface and leads to a spatial confinement of the electronically excited wave functions. Depending on the adsorbant positions, the chemisorption significantly modifies the optical selection rules. Our modeling suggests that photoluminescent efficiency of semiconducting SWNT materials can be controlled by selective chemical functionalization.  相似文献   

20.
A novel method to synthesize single-wall carbon nanotube (SWNT)/poly(methyl methacrylate) (PMMA) nanocomposite by in-situ polymerization in supercritical CO2 is presented. The surfaces of the SWNT bundles were first functionalized with amino ethyl methacrylate (AEMA) followed by co-polymerization with methyl methacrylate. Supercritical fluid enhanced the diffusivity of monomer and facilitated the growth of tethered PMMA chains near the entanglement area and the interstitial space of the SWNT bundles. Partial debundling and disentanglement of the SWNT bundles and an enhanced dispersion in the polymer matrix were observed under SEM and TEM. After the removal of the polymer matrix physically attached to the nanotubes, it is found that the nanotubes were covered by tethered PMMA chains, which were a few nanometers in thickness. This work creates a route for improving impregnation and dispersion in SWNT composites; the same process can be extended to other vinyl polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号