首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
好氧反硝化菌的分离及应用研究进展   总被引:1,自引:0,他引:1  
梁炜  詹颖 《广东化工》2016,(12):105-107
好氧反硝化菌是好氧或兼性好氧的异养微生物中的一类,由于它的生长特性以及具有同步异养硝化好氧反硝化的功能,这就为环境的生物脱氮提供了一个崭新的技术思路。文章综述了好氧反硝化菌的种类、特性、反硝化作用机制和影响因素,介绍了好氧反硝化菌在废水治理以及大气治理方面的应用。  相似文献   

2.
异养硝化-好氧反硝化菌异养硝化性能的影响因素   总被引:1,自引:0,他引:1       下载免费PDF全文
在异养硝化-好氧反硝化菌H1良好的脱氮效果基础上,研究了在不同溶解氧浓度、废水成分和金属离子存在条件下时,H1的代谢途径及其异养硝化性能的变化。研究表明,溶解氧浓度在4.7 mg/L时,H1脱氮途径最佳;在NH4+模拟废水中,NH4+会通过NH4+—→NH2OH—→N2O—→N2的途径被快速去除;在NH4+和NO2?混合模拟废水中,没有显示出H1优先进行反硝化的现象,NH4+-N的降解是短程的硝化反硝化过程;在NH4+和NO3?混合模拟废水中,NO3?会诱导羟胺氧化酶产生NO2?-N,使得NH4+-N经过反硝化途径的亚硝酸盐水平被去除;在NH4+模拟废水中,1 mmol/L的Cu2+和Fe2+对异养硝化过程具有显著地激活作用。  相似文献   

3.
从异养硝化-好氧反硝化应用受限的角度出发,叙述了温度、pH、盐度、重金属、降解底物等影响因素对其脱氮性能的影响效果,以及提高异养硝化-好氧反硝化效果的生物强化措施。认为未来异养硝化-好氧反硝化菌实际应用技术研发与推广研究,可趋向于环境因子对异养硝化-好氧反硝化菌影响的机制研究,多领域交叉研究,以及加强基于生物强化应用的耐受性菌株的筛选3方面。可为异养硝化-好氧反硝化菌理论研究与工程应用提供参考。  相似文献   

4.
异养硝化-好氧反硝化(HN-AD)技术可在好氧的情况下同步去除水中的COD与总氮,其脱氮产物大多为无温室效应的氮气,脱氮过程中酸碱中和。然而实际废水成分复杂且水量水质不稳定,这使HN-AD技术的应用受到了限制。近年来不少学者针对不同的环境限制因子对HN-AD菌脱氮能力的影响进行了探索。为此,综述了近几年HN-AD菌在不同环境限制因子影响下的研究进展。  相似文献   

5.
随着生物脱氮工艺在国内外污水处理中的广泛应用,人们对微生物脱氮菌的研究越来越多。近年来,人们发现有些脱氮微生物兼具异养硝化和好氧反硝化的功能。介绍了国内外异养硝化-好氧反硝化菌的种类、筛选方法以及脱氮性能,并提出了今后的研究和发展方向。  相似文献   

6.
好氧反硝化生物脱氮机理分析及研究进展   总被引:6,自引:0,他引:6  
传统生物脱氮包括好氧硝化和缺氧反硝化两个过程。针对传统生物脱氮工艺存在的不足,提出好氧反硝化技术优点,初步探讨了好氧反硝化的机理,并从不同角度做了理论分析。同时阐述了有关好氧反硝化脱氮的研究进展,对好氧反硝化的应用前景作了展望,提出了好氧反硝化今后的研究方向应重点放在对好氧反硝化菌的筛选和驯化上,并深入了解其反硝化特性,以对好氧反硝化生物脱氮提供有力的技术支持。(哈尔滨工业大学市政环境工程学院,哈尔滨150090)  相似文献   

7.
乔楠  高明星  聂刚  陈瑞佳  于大禹 《硅酸盐通报》2015,34(11):3090-3094
硅藻土是一种优良的吸附型微生物固定化载体,经硫酸亚铁及碳酸钙先后改性处理后,控制吸附时间为24h能达到最佳的菌体负载效果,对异养硝化-好氧反硝化菌的固定化率可达66.13%.利用改性硅藻土负载的异养硝化-好氧反硝化菌对模拟生活污水进行处理,固定化菌对污水中氨氮及CODCr的去除率分别达到73.9%及83.1%,均高于游离菌.将改性硅藻土负载的异养硝化-好氧反硝化菌投加到反应器中对实际生活污水进行序批式处理,经过多批次的运行,生活污水中总氮、氨氮及CODCr的去除效果始终维持在较高水平,固定化效果比较稳定,表明改性硅藻土负载异养硝化-好氧反硝化菌在生活污水处理领域具有广阔的应用前景,有利于推动硅藻土经济的发展.  相似文献   

8.
污废水的高效节能脱氮技术一直以来都是研究和应用的焦点。短程反硝化-厌氧氨氧化耦合工艺因具有能耗低、产泥少、温室气体减排和脱氮效果好等优点,已成为废水脱氮领域研究和应用的热点。其中,短程反硝化被认为是厌氧氨氧化菌获取底物(NO2--N)的重要途径之一,对其进行研究具有重要的科学和工程意义。基于此,综述了短程反硝化的工艺原理,总结了硫自养短程反硝化和异养短程反硝化微生物的富集方法,并探讨了短程反硝化-厌氧氨氧化耦合工艺处理城市污水、高浓度氨氮废水和硝酸盐废水的工程应用。最后对短程反硝化及其耦合厌氧氨氧化工艺的研究和应用方向进行了展望,以期为短程反硝化-厌氧氨氧化耦合工艺处理实际污水提供参考。  相似文献   

9.
胡杰  颜家保  霍晓琼  陈美玲  李超 《化工进展》2019,38(3):1567-1572
针对生物法处理低C/N比废水存在碳源不足、脱氮效率不高问题,从石化废水处理厂活性污泥中分离得到一株低C/N比异养硝化-好氧反硝化菌株WUST-7。通过形态学观察、生理生化试验和16S rDNA序列分析,鉴定其为假单胞菌属(Pseudomonas sp.)。通过单因素实验,考察碳源种类、培养温度、初始pH和摇床转速对菌株硝化性能的影响,确定最优异养硝化培养条件为:丁二酸钠为碳源、培养温度30~35℃、初始pH8.0~9.0、摇床转速150~200r/min。在最优异养硝化条件下培养9h,可将初始浓度为107.52mg/L的氨氮去除90.64%,并且在整个培养过程中没有亚硝酸盐氮的积累,硝酸盐氮含量也始终低于3.5mg/L,总氮的去除率达88.63%。实验结果表明,菌株WUST-7在利用氨氮进行硝化反应的同时,还可以利用硝酸盐氮进行反硝化,具有良好的同步硝化反硝化潜能。  相似文献   

10.
生活污水不同生物脱氮过程中N_2O产量及控制   总被引:7,自引:2,他引:5       下载免费PDF全文
巩有奎  王赛  彭永臻  王淑莹 《化工学报》2010,61(5):1286-1292
利用好氧-缺氧SBR反应器和全程曝气SBBR反应器处理生活污水,分别实现了全程、短程和同步硝化反硝化脱氮过程,研究了不同脱氮过程中N2O的产生及释放情况,同时考察了不同DO条件下同步脱氮效率及N2O产生量。结果表明,全程、短程生物脱氮过程中N2O主要产生于硝化过程,反硝化过程有利于降低系统N2O产量。全程、短程、同步硝化反硝化脱氮过程中N2O产量分别为4.67、6.48和0.35mg.L-1。硝化过程中NO2-N的积累是导致系统N2O产生的主要原因。部分AOB在限氧条件下以NH4+-N作为电子供体,NO2-N作为电子受体进行反硝化,最终产物是N2O。不同DO条件下同步硝化反硝化过程中N2O的产生表明:控制SBBR系统中DO浓度达到稳定的同步脱氮效率可使系统N2O产量最低。  相似文献   

11.
异养硝化-好氧反硝化(Heterotrophic nitrification-aerobic denitrification,HN-AD)菌可以在有机碳存在的好氧条件下实现同时硝化和反硝化,广泛应用于各类污水处理过程中。综述了HN-AD菌株的脱氮特性和代谢途径,总结了其在污水处理中的应用和研究现状,比较了不同载体材料的优缺点,重点讨论了固定HN-AD菌株提高反应器处理效果和稳定性的作用机理。最后,展望了固定化HN-AD菌株在污水处理中面临的挑战和未来的研究方向。  相似文献   

12.
乔楠  陈瑞佳  于大禹 《化工进展》2015,34(5):1459-1465
将硅藻土经改性后作为异养硝化-好氧反硝化菌H1的载体,对负载条件以及固定化菌对环境的耐受性能进行了优化及研究.确定最佳吸附时间为24h,载体投加量为0.06g/mL(硅藻土/菌悬液).改性剂FeSO4用量、pH值、温度不仅影响硅藻土载体吸附性,同时影响固定化H1活性.菌株经改性硅藻土负载后较游离菌对pH值及温度耐受性都有所增强,对溶解氧变化适应范围更广,当m(FeSO4)/m(硅藻土)=3.5%、pH=7.5、温度为30℃、溶解氧为5.1mg/L左右时,固定化H1脱氮性能最佳.使用该固定化菌对生活污水进行连续式处理,8天后目标污染物的去除率趋于稳定,TN、NH4+-N及COD去除率分别达到52.40%、55.64%与61.23%,表明改性硅藻土负载异养硝化-好氧反硝化菌在污水脱氮领域具有广阔的前景.  相似文献   

13.
张宪鑫  汪苹  孟维 《广州化工》2014,(24):49-53
通过L9(34)正交试验和单因素实验优化培养条件,从七株不同菌属的异养硝化-好氧反硝化菌中优选兼具除磷性能菌株。结果表明:优选出的两株异养硝化-好氧反硝化菌分别为丛毛单胞菌WXZ-17和芽孢杆菌WXZ2-4,二者均具有厌氧除磷性能,磷化氢为重要除磷产物。优选的两株菌培养条件均为: T=32.0℃、 pH=6.50、氮源为蛋白胨+氯化铵+硝酸钠、总磷浓度为20.0 mg/L,相应的除磷率分别为25.6%和36.0%。在早期脱氮实验中已证实该两株菌脱氮效率分别为:89.7%和96.4%。筛选出的兼具脱氮和除磷性能的菌株使实现废水同步脱氮除磷成为可能。  相似文献   

14.
通过L9(34)正交试验和单因素实验优化培养条件,从七株不同菌属的异养硝化-好氧反硝化菌中优选兼具除磷性能菌株。结果表明:优选出的两株异养硝化-好氧反硝化菌分别为丛毛单胞菌WXZ-17和芽孢杆菌WXZ2-4,二者均具有厌氧除磷性能,磷化氢为重要除磷产物。优选的两株菌培养条件均为:T=32.0℃、pH=6.50、氮源为蛋白胨+氯化铵+硝酸钠、总磷浓度为20.0 mg/L,相应的除磷率分别为25.6%和36.0%。在早期脱氮实验中已证实该两株菌脱氮效率分别为:89.7%和96.4%。筛选出的兼具脱氮和除磷性能的菌株使实现废水同步脱氮除磷成为可能。  相似文献   

15.
在SBBR中接种硝化菌时SND特性及机理   总被引:1,自引:0,他引:1  
通过加硝化菌与未加硝化菌的对比试验,对序批式生物膜法(SBBR)中户斤表现出来的脱氮特性进行了试验分析,研究探讨生物膜法SND脱氮的机理:好氧情况下生物膜的吸附作用为反硝化菌提供碳源和能源;SND反应主要发生在好氧生物膜层和兼性生物膜分界内;在深层的反硝化菌利用生物膜中储存的有机物作为有机碳源,将好氧生物膜中产生的N03^ 3-N转化为N2。同时加入一定量的硝化菌能较好地提高硝化,脱氮率。  相似文献   

16.
脱氮是大部分废水处理系统中不可缺少的一环。与物理化学法相比,生物脱氮具有经济有效、操作方便以及无二次污染的优势。综述了各类生物脱氮技术的研究背景、机理及其存在的问题,并作了简单比较。结果表明,全程硝化反硝化应用广泛且稳定可靠。异养硝化-好氧反硝化对碳源需求较高(COD/N10),而短程硝化反硝化可节约大量能源和碳源。厌氧氨氧化脱氮速率高且无外加碳源,但细菌富集和前期启动较为困难。  相似文献   

17.
生物脱氮是目前处理水体氮素污染的有效方法,本文以(NH4)2SO4为氮源、柠檬酸三钠为碳源培养好氧反硝化菌H1,4天后NH4+-N的去除率达到76.92%,COD去除率达到84.29%,说明H1为异养硝化-好氧反硝化菌。当NH4+-N与NO3--N同时存在时,H1对NH4+-N的去除率在2天后即达到80%以上,但对NO3--N的去除明显滞后,说明H1优先利用NH4+-N。利用H1处理生活污水,其能够促使污水中的有机氮迅速转化为氨氮,最终使污水中总氮、NH4+-N、COD的去除率均达到90%以上,表明H1在生活污水处理领域具有巨大的应用前景。  相似文献   

18.
硝化菌与反硝化菌混合培养生物脱氮的研究   总被引:1,自引:0,他引:1  
从污泥中筛选得到了脱氮效率较高的硝化菌、亚硝化菌和反硝化菌,测定了其在含氮溶液中的生长曲线,计算得到其反硝化或硝化强度。将所得菌种在好氧条件下于模拟污水中进行混合培养,研究了脱氮效率及影响因素,并与用传统生物序列法进行硝化与反硝化培养脱氮的效果进行了比较。结果表明:混合培养硝化菌、亚硝化菌和反硝化菌过程中不会累积中间产物,生物脱氮率可达76.7%,较传统序列式脱氮法有显著提高,混合培养过程受pH值和温度的影响较小,是一种简易可行、高效和无污染的生物脱氮方法。  相似文献   

19.
高氨氮、高盐、含有机物的食品工业污水处理难度大、周期长,添加高效硝化菌株可以大幅提高污水处理效率。本研究通过高盐培养基,从腌渍食品厂排放污水中筛选出一株对复杂环境有较强耐受性的新型高效异养硝化-好氧反硝化菌株JG441,经鉴定为Bacillus sp.,对其脱氮条件、异养硝化、好氧反硝化、极端环境耐受和脱氮通路进行研究。结果表明,菌株JG441可以利用(NH4)2SO4和KNO3为氮源进行异养硝化和好氧反硝化;在NaCl浓度为30g·L-1,苯酚浓度为400mg·L-1时,24h NH4+-N去除率可达99%,在NH4+-N浓度为500mg·L-1时,24h NH4+-N去除率为57.4%。菌株JG441脱氮能力强,在高盐含氮和成分复杂的污水处理方面具有较好应用潜力。  相似文献   

20.
《化工环保》Vo1.24,No.2,2004,103~106近年来,含氮化合物导致水体污染和水质富营养化的现象日益严重,开发和应用高效节能的废水脱氮工艺已成为当今水污染控制领域的研究热点。一些研究结果表明,硝化反应不仅由自养菌完成,某些异养菌也可以进行硝化反应;反硝化反应不只是在厌氧条件下进行,在好氧条件下某些细菌也可进行反硝化反应,而且许多好氧反硝化菌同时也是异养  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号