首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the structures of aminopyridine thrombin inhibitors (1), a series of aminoalkyl- and guanidinoalkyl-substituted diarylsulfonamides were prepared. The most potent derivative, N-[3-(4-guanidinobutoxy)-5-methyl-phenyl]-benzenesulfonamide (6c) had Ki = 0.18 microM for thrombin and did not inhibit trypsin, plasmin, or factor Xa. Comparison of the X-ray structures of the thrombin/1b and the thrombin/6c complexes revealed important aspects which govern the binding of such diarylsulfonamides to thrombin.  相似文献   

2.
Synthesis of a variety of 5,5-trans fused lactones, related to compounds found in extracts of Lantana camara, has provided a series of novel acylating inhibitors of human thrombin, trypsin, chymotrypsin and human leucocyte elastase. The most effective thrombin inhibitor is 7 with an IC50 of 130 nM and a Kobs/[1] of 4,000 M-1 s-1.  相似文献   

3.
A series of new peptidyl (alpha-aminoalkyl)phosphonate diphenyl esters containing the 4-amidinophenyl group were synthesized and tested as irreversible inhibitors for thrombin and other trypsin-like enzymes. These phosphonates irreversibly inhibited several coagulation enzymes and trypsin. Boc-D-Phe-Pro-(4-AmPhGly)P(OPh)2 is the best human thrombin inhibitor in the series with a k(obs)/[I] value of 11,000 M-1 s-1, and it inhibits thrombin more than 5-fold more effectively than the other enzymes tested. Z-(4-AmPhGly)P(OPh)2 is the best inhibitor for plasma kallikrein with a k(obs)/[I] value of 18,000 M-1 s-1. Generally, the (4-AmPhGly)P(OPh)2 derivatives are better inhibitors of thrombin and trypsin than the corresponding (4-AmPhe)P(OPh)2 derivatives which contain an extra CH2 separating the amidinophenyl group from the peptide backbone. The amidino phosphonates did not inhibit acetylcholinesterase and were chemically stable in neutral buffers. In addition, the inhibited trypsin derivative did not regain any enzyme activity after removal of excess inhibitor and incubation in a pH 7.5 buffer for 1 day. Boc-D-Phe-Pro-(4-AmPhGly)P(OPh)2 and D-Phe-Pro-(4-AmPhe)P(OPh)2 prolonged the prothrombin time ca. 2-fold and prolonged the activated partial thromboplastin time ca. 3-4-fold in human plasma at concentrations of 63 and 125 microM, respectively. The novel amidine-containing peptidyl phosphonates reported here are thus effective anticoagulants in vitro, and they may have utility for use in vivo.  相似文献   

4.
Previous studies have shown that tissue-factor-pathway inhibitor (TFPI) is an important regulator of the extrinsic pathway of blood coagulation through its ability to inhibit factor Xa and factor VIIa-tissue factor activity. We describe the molecular cloning and expression of a full-length cDNA that encodes a molecule, designated TFPI-2, that has a similar overall domain organization and considerable primary amino acid sequence homology to TFPI. After a 22-residue signal peptide, the mature protein contains 213 amino acids with 18 cysteines and two canonical N-linked glycosylation sites. The deduced sequence of mature TFPI-2 revealed a short acidic amino-terminal region, three tandem Kunitz-type domains, and a carboxyl-terminal tail highly enriched in basic amino acids. Northern analysis indicates that TFPI-2 is transcribed in umbilical vein endothelial cells, liver, and placenta. TFPI-2 was expressed in baby hamster kidney cells and purified from the serum-free conditioned medium by a combination of heparin-agarose chromatography, Mono Q FPLC, Mono S FPLC, and Superose 12 FPLC. Purified TFPI-2 migrated as a single band in SDS/PAGE and exhibited a molecular mass of 32 kDa in the presence and absence of reducing agent. The amino-terminal sequence of recombinant TFPI-2 was identical to that predicted from the cDNA. Despite its structural similarity to TFPI, the purified recombinant TFPI-2 failed to react with polyclonal anti-TFPI IgG. Preliminary studies indicated that purified recombinant TFPI-2 strongly inhibited the amidolytic activities of trypsin and the factor VIIa-tissue factor complex. In addition, the inhibition of factor VIIa-tissue factor amidolytic activity by recombinant TFPI-2 was markedly enhanced in the presence of heparin. TFPI-2 at high concentrations weakly inhibited the amidolytic activity of human factor Xa, but had no measurable effect on the amidolytic activity of human thrombin.  相似文献   

5.
Studies with peptide-based and macromolecular inhibitors of the caspase family of cysteine proteases have helped to define a central role for these enzymes in inflammation and mammalian apoptosis. A clear interpretation of these studies has been compromised by an incomplete understanding of the selectivity of these molecules. Here we describe the selectivity of several peptide-based inhibitors and the coxpox serpin CrmA against 10 human caspases. The peptide aldehydes that were examined (Ac-WEHD-CHO, Ac-DEVD-CHO, Ac-YVAD-CHO, t-butoxycarbonyl-IETD-CHO, and t-butoxycarbonyl-AEVD-CHO) included several that contain the optimal tetrapeptide recognition motif for various caspases. These aldehydes display a wide range of selectivities and potencies against these enzymes, with dissociation constants ranging from 75 pM to >10 microM. The halomethyl ketone benzyloxycarbonyl-VAD fluoromethyl ketone is a broad specificity irreversible caspase inhibitor, with second-order inactivation rates that range from 2.9 x 10(2) M-1 s-1 for caspase-2 to 2.8 x 10(5) M-1 s-1 for caspase-1. The results obtained with peptide-based inhibitors are in accord with those predicted from the substrate specificity studies described earlier. The cowpox serpin CrmA is a potent (Ki < 20 nM) and selective inhibitor of Group I caspases (caspase-1, -4, and -5) and most Group III caspases (caspase-8, -9, and -10), suggesting that this virus facilitates infection through inhibition of both apoptosis and the host inflammatory response.  相似文献   

6.
Derivatives of (2-amidino-1,2,3, 4-tetrahydro-isoquinolin-7-yloxy)phenylacetic acid (TIPAC) were developed as inhibitors of factor Xa (fXa). The compounds are prepared using 15 synthetic steps on average. The most potent compounds (14, 17, 22-26) display inhibition constants of Ki = 21-55 nM but do not inhibit thrombin (Ki = 5->100 microM) and only weakly inhibit trypsin (Ki = 0.08-5 microM). They bear a second basic moiety, e.g., substituted 1-(iminomethyl)piperidines, which is linked to C-4 of the phenyl group of TIPAC via an oxygen atom. The inhibition constants of these compounds are almost independent of the size of the (iminomethyl)piperidine substituent. Due to the fact that fXa displays two cation binding sites, namely, the S1 and S4 sites, in principle two binding modes are conceivable for the novel dibasic fXa inhibitors. Molecular modeling experiments based on the X-ray structures of uninhibited fXa and the DX-9065a/fXa complex were carried out. The results taken together with the inhibition constants clearly favor one binding mode: the tetrahydro-isoquinoline fills the S1 pocket even better than the naphthalene moiety of DX-9065a, and the (iminomethyl)piperidine residues occupy the S4 site.  相似文献   

7.
Although heparin has been used clinically for prophylaxis and treatment of thrombosis, it has suffered from problems such as short duration within compartments in vivo that require long term anticoagulation. A covalent antithrombin-heparin complex has been produced with high anticoagulant activity and a long half-life relative to heparin. The product had high anti-factor Xa and antithrombin activities compared with noncovalent mixtures of antithrombin and heparin (861 and 753 units/mg versus 209 and 198 units/mg, respectively). Reaction with thrombin was rapid with bimolecular and second order rate constants of 1.3 x 10(9) M-1 s-1 and 3.1 x 10(9) M-1 s-1, respectively. The intravenous half-life of the complex in rabbits was 2.6 h as compared with 0.32 h for similar loads of heparin. Subcutaneous injection of antithrombin-heparin resulted in plasma levels (peaking at 24-30 h) that were still detectable 96 h post-injection. Given the increased lifetime in these vascular and intravascular spaces, use of the covalent complex in the lung was investigated. Activity of antithrombin-heparin instilled into rabbit lungs remained for 48 h with no detection of any complex systemically. Thus, this highly active agent has features required for pulmonary sequestration as a possible treatment for thrombotic diseases such as respiratory distress syndrome.  相似文献   

8.
The inhibition of peptide bond formation by spiramycin was studied in an in vitro system derived from Escherichia coli. Peptide bonds are formed between puromycin (S) and Ac-Phe-tRNA, which is a component of complex C, i.e., of the [Ac-Phe-tRNA-70S ribosome-poly(U)] complex, according to the puromycin reaction: C+S (Ks)<==>CS (k3)==>C'+P [Synetos, D., & Coutsogeorgopoulos, C. (1987) Biochim. Biophys. Acta 923, 275-285]. It is shown that spiramycin (A) reacts with complex C and forms the spiramycin complex C*A, which is inactive toward puromycin. C*A is the tightest complex formed between complex C and any of a number of antibiotics, such as chloramphenicol, blasticidin S, lincomycin, or sparsomycin. C*A remains stable following gel chromatography on Sephadex G-200 and sucrose gradient ultracentrifugation. Detailed kinetic study suggests that C*A is formed in a variation of a two-step mechanism in which the initial encounter complex CA is kinetically insignificant and C*A is the product of a conformational change of complex CA according to the equation, C+A (kassoc)<==>(kdissoc) C*A. The rate constants of this reaction (spiramycin reaction) are kassoc = 3.0 x 10(4) M-1 s-1 and kdissoc = 5.0 x 10(-5) s-1. Such values allow the classification of spiramycin as a slow-binding, slowly reversible inhibitor; they also lead to the calculation of an apparent overall dissociation constant equal to 1.8 nM for the C*A complex. Furthermore, they render spiramycin a useful tool in the study of antibiotic action on protein synthesis in vitro. Thus, the spiramycin reaction, in conjunction with the puromycin reaction, is applied (i) to detect a strong preincubation effect exerted by chloramphenicol and lincomycin (this effect constitutes further evidence that these two antibiotics combine with complex C as slow-binding inhibitors) and (ii) to determine the rate constant for the regeneration (k7 = 2.0 x 10(-3) s-1) of complex C from the sparsomycin complex C*I [Theocharis, D. A., & Coutsogeorgopoulos, C. (1992) Biochemistry 31, 5861-5868] according to the equation, C+I (Ki)<==>CI (k6)<==>(k7) C*I. The determination of k7 enables us to calculate the apparent association rate constant of sparsomycin, (k7/Ki') = 1.0 x 10(5) M-1 s-1, where Ki' = Ki(k7/k6 + k7). It is also shown that Ac-Phe-tRNA bound to the sparsomycin complex C*I is protected against attack by hydroxylamine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Meizothrombin and meizothrombin(desF1) are intermediates formed during the conversion of prothrombin to thrombin by factor Xa, factor Va, phospholipids, and Ca2+ (prothrombinase). These intermediates are active toward synthetic peptide substrates but have limited ability to interact with platelets or macromolecular substrates such as fibrinogen. Meizothrombin and meizothrombin(desF1) activate protein C, however, and may exert primarily an anticoagulant effect. In this study, we investigated the inhibition of meizothrombin and meizothrombin(desF1) by two glycosaminoglycan-dependent protease inhibitors, heparin cofactor II (HCII) and antithrombin (AT). Purified recombinant meizothrombin and meizothrombin(desF1) were inhibited by HCII in the presence of dermatan sulfate with maximal second-order rate constants of 8 x 10(6) M-1.min-1 and 1.8 x 10(7) M-1.min-1, respectively, but were inhibited less than one-tenth as fast by AT in the presence of heparin. Similarly, the products of the prothrombinase reaction were inhibited in situ more effectively by HCII than by AT. When HCII and dermatan sulfate were present continuously during the prothrombinase reaction, meizothrombin was trapped as a sodium dodecyl sulfate-stable complex with HCII and no amidolytic activity could be detected with a thrombin substrate. Our findings indicate that HCII is an effective inhibitor of meizothrombin and meizothrombin(desF1) and, therefore, might regulate the anticoagulant activity of these proteases.  相似文献   

10.
A classical soybean inhibitor of the Bowman-Birk type (BBI) with a copolymer of ethylene oxide and propylene oxide (PE) has been synthesized. The BBI-PE conjugate contain five covalently bound polymeric chains per one protein molecule and retains its capacity to inhibit trypsin (Ki = 10(-10) M), alpha-chymotrypsin (Ki = 7 x 10(-8) M) and human granulocyte elastase (Ki = 3 x 10(-8) M). The preservation of the antiproteinase activity in the antichymotrypsin center creates a prerequisite for the manifestation of the anticarcinogenic effect of the inhibitor.  相似文献   

11.
We have prepared a series of biotinylated analogs of omega-conotoxin (omega CgTx) as potent, selective markers for N-type calcium channels. At pH 9.5, reaction of omega CgTx with amidocaproylbiotin succinimidyl ester gives three biotinylated conjugates, labeled at lysines 2 or 24, or at both positions. Kinetic competition assays of 125I-omega CgTx binding to rat brain synaptic membranes show that each conjugate has a similar rate constant for association (1-1.3 x 10(6) M-1 s-1) but not dissociation (1-4 x 10(-4) s-1). Comparison with rate constants obtained for the association (1.2 x 10(7) M-1 s-1) and dissociation (5 x 10(-5) s-1) of native omega CgTx indicates that while biotinylation reduces omega CgTx potency (Kdkin = k-2/k2 = 4 pM for omega CgTx), binding of these labels to membranes is nevertheless of very high affinity (Kdkin 0.1-0.3 nM).  相似文献   

12.
Plasminogen activator inhibitor-1 (PAI-1) is the primary inhibitor of the plasminogen activators (PAs), tissue-type plasminogen activator (tPA), and urokinase-type plasminogen activator (uPA). A library of PAI-1 mutants containing substitutions at the P1 and P1' positions was screened for functional activity against tPA and thrombin. Several PAI-1 variants that were inactive against uPA in a previous study (Sherman, P. M., Lawrence, D. A., Yang, A. Y., Vandenberg, E. T., Paielli, D., Olson, S. T., Shore, J. D., and Ginsburg, D. (1992) J. Biol. Chem. 267, 7588-7595) had significant inhibitory activity toward tPA. This set of tPA-specific PAI-1 mutants contained a wide range of amino acid substitutions at P1 including Asn, Gln, His, Ser, Thr, Leu, Met, and all the aromatic amino acids. This group of mutants also demonstrated a spectrum of substitutions at P1'. Kinetic analyses of selected variants identified P1Tyr and P1His as the most efficient tPA-specific inhibitors, with second-order rate constants (ki) of 4.0 x 10(5) M-1s-1 and 3.6 x 10(5) M-1s-1, respectively. Additional PA-specific PAI-1 variants containing substitutions at P3 through P1' were constructed. P3Tyr-P2Ser-P1Lys-P1'Trp and P3Tyr-P2Ser-P1Tyr-P1'Met had ki values of 1.7 x 10(6) M-1s-1 and 2.5 x 10(6) M-1s-1 against tPA, respectively, but both were inactive against uPA. In contrast, P2Arg-P1Lys-P1'Ala inhibited uPA 74-fold more rapidly than tPA. The mutant PAI-1 library was also screened for inhibitory activity toward thrombin in the presence and absence of the cofactor heparin. While wild-type PAI-1 and several P1Arg variants inhibited thrombin in the absence of heparin, a number of variants were thrombin inhibitors only in the presence of heparin. These results demonstrate the importance of the reactive center residues in determining PAI-1 target specificity and suggest that second sites of interaction between inhibitors and proteases can also contribute to target specificity. Finally, the PA-specific mutants described here should provide novel reagents for dissecting the physiological role of PAI-1 both in vitro and in vivo.  相似文献   

13.
The relaxing effect of coagulation factor Xa on phenylephrine-contracted rat aortic rings was compared with the effect of thrombin and trypsin. All three proteases induced a dose-dependent relaxation in the presence of an intact endothelium. EC50 values were 3 +/- 1, 24 +/- 9, and 16 +/- 1 nmol/L for thrombin, trypsin, and factor Xa, respectively. Whereas thrombin induced rapid relaxations followed by partial recontraction, trypsin and factor Xa induced slower sustained effects. Factor Xa-induced relaxations were not affected by hirudin at high concentrations (1 mumol/L) but were abolished by DX9065A, a specific inhibitor of the catalytic activity of factor Xa. Furthermore, no relaxations to factor Xa could be elicited in the presence of the NO synthase inhibitor N omega-nitro-L-arginine methyl ester (100 mumol/L), whereas relaxations were not altered in the presence of the inactive enantiomer N omega-nitro-D-arginine methyl ester (100 mumol/L). Addition of factor Xa together with thrombin induced relaxations that were larger than those induced by thrombin alone, whereas factor Xa had no additional effects on trypsin-induced relaxations. Further-more, factor Xa relaxed thrombin-desensitized aortic rings but was ineffective in trypsin-desensitized tissues. These data suggest that factor Xa acts on a cleavable endothelial receptor that induces NO release, resulting in the relaxation of precontracted rat aortic rings. Factor Xa does not act through endothelial thrombin receptors but may activate another cleavable trypsin-sensitive receptor.  相似文献   

14.
Three accessible disulphide bonds of basic trypsin-subtilisin inhibitor from marine turtle eggwhite have been reduced with 0.1M NaBH4 at 0 degree C under nitrogen atmosphere at pH9.8 and then S-carboxymethylated. The partially reduced inhibitor retains 80% of the native inhibitory activity towards trypsin and subtilisin. The S-carboxymethylated inhibitor undergoes slower refolding than the native inhibitor from its fully denatured and reduced state at pH 8.5 in the presence of oxidised and reduced glutathione. The refolding process was characterised by the attainment of the inhibitory activity towards trypsin and subtilisin. The values of the second order rate constant for the refolding reactions of the modified protein are 0.02 x 10(2)M-1sec1 and 0.033 x 10(2)M-1sec-1 for its trypsin and subtilisin inhibiting domains and their energies of activation are 20.1 Kcal/mole and 24.6 Kcal/mole. The partially modified inhibitor does not regain complete inhibitory activity even after long incubation in the oxido-shuffling buffer. From the above findings it can be concluded that the three disulphide bonds of the native inhibitor are not essential for the inhibitory activity of the trypsin-subtilisin inhibitor but they help in the correct refolding of the inhibitor by forming transient disulphide bonds with the external disulphide reagents as well as with the internal sulphydryl groups.  相似文献   

15.
A series of 7-amino-4-chloro-3-(3-isothioureidopropoxy)isocoumarin (NH2-CiTPrOIC) derivatives with various substituents at the 7- and 3-positions have been synthesized as inhibitors of several blood coagulation enzymes. Isocoumarins substituted with basic groups such as guanidino or isothioureidoalkoxy groups were previously shown to be potent irreversible inhibitors of blood coagulation enzymes [Kam et al. Biochemistry 1988, 27, 2547-2557]. Substituted isocoumarins with an isothioureidoethoxy group at the 3-position and a large hydrophobic group at the 7-position are better inhibitors for thrombin, factor VIIa, factor Xa, factor XIa, factor IIa, and factor IXa than NH2-CiTPrOIC (4). PhNHCONH-CiTEtOIC (14), (S)-Ph(CH3)CHNHCONH-CiTEtOIC (25), and (R)-Ph(CH3)CHNHCONH-CiTEtOIC (26) inhibit thrombin quite potently and have kobs/[I] values of (1-4) x 10(4) M-1 s-1. Modeled structures of several isocoumarins noncovalently complexed with human alpha-thrombin suggest that H-bonding between the 7-substituent and the Lys-60F NH3+ relates to the inhibitory potency. Thrombin inhibited by 14, 25, or 26 is quite stable, and only 4-16% of enzymatic activity is regained after incubation for 20 days in 0.1 M Hepes, pH 7.5 buffer. However, 100, 67, and 65% of enzyme activity, respectively, is regained with the addition of 0.38 M hydroxylamine. With normal citrated pig or human plasma, these isocoumarin derivatives prolong the prothrombin time ca. 1.3-3.1-fold and also prolong the activated partial thromboplastin time more than 3-7-fold at 32 microM. Thus, these compounds are effective anticoagulants in vitro and may be useful in vivo.  相似文献   

16.
YM-60828 was found to potently inhibit human factor Xa following oral administration. YM-60828 showed high affinity for factor Xa (Ki = 1.3 nM), but did not affect thrombin (Ki > 100 microM). YM-60828 doubled factor Xa clotting time, prothrombin time (PT) and activated partial thromboplastin time (APTT) at 0.10, 0.21, 0.24 microM, respectively. Importantly, it did not prolong thrombin time at 100 microM. YM-60828 also inhibited factor Xa in the prothrombinase complex with an IC50 value of 7.7 nM. In addition to its anticoagulant activity, YM-60828 inhibited platelet aggregation induced by various agonists (IC50 = 3 to 23 microM). Squirrel monkeys were used to study the ex vivo anticoagulant activity and pharmacokinetic properties of YM-60828. One hour after oral administration at 3 mg/kg, YM-60828 strongly prolonged PT and APTT by 4.8- and 1.9-fold, respectively, and plasma concentration reached 788 +/- 167 ng/ml. Bioavailability was calculated to be 20.3%. These results strongly suggest that YM-60828 will be a valuable orally active and potent anticoagulant agent showing potential antithrombotic activity.  相似文献   

17.
Quantitative characterization of the interaction of des-kringle1-5-plasmin (microplasmin) with fibrin(ogen) and plasma protease inhibitors may serve as a tool for further evaluation of the role of kringle domains in the regulation of fibrinolysis. Comparison of fibrin(ogen) degradation products yielded by plasmin, miniplasmin (des-kringle1-4-plasmin), microplasmin, and trypsin on SDS gel electrophoresis indicates that the differences in the enzyme structure result in different rates of product formation, whereas the products of the four proteases are very similar in molecular weight. Kinetic parameters show that plasmin is the most efficient enzyme in fibrinogen degradation, and the kcat/KM ratio decreases in parallel with the loss of the kringle domains. The catalytic sites of the four proteases have similar affinities for fibrin (KM values between 0.12 and 0.21 microM). Trypsin has the highest catalytic constant for fibrin digestion (kcat = 0.47 s-1), and among plasmins with different kringle structures, the loss of kringle5 results in a markedly lower catalytic rate constant (kcat = 0.0076 s-1 for microplasmin vs 0.048 s-1 for miniplasmin and 0.064 s-1 for plasmin). In addition, microplasmin is inactivated by plasmin inhibitor (k" = 3.9 x 10(5) M-1 s-1) and antithrombin (k" = 1.4 x 10(3) M-1 s-1) and the rate of inactivation decreases in the presence of fibrin(ogen). Heparin (250 nM) accelerates the inactivation of microplasmin by antithrombin (k" = 10.5 x 10(3) M-1 s-1 ), whereas that by plasmin inhibitor is not affected (k" = 4.2 x 10(5) M-1 s-1).  相似文献   

18.
Random mutagenesis and screening for enzymatic activity has been used to engineer horse heart myoglobin to enhance its intrinsic peroxidase activity. A chemically synthesized gene encoding horse heart myoglobin was subjected to successive cycles of PCR random mutagenesis. The mutated myoglobin gene was expressed in Escherichia coli LE392, and the variants were screened for peroxidase activity with a plate assay. Four cycles of mutagenesis and screening produced a series of single, double, triple, and quadruple variants with enhanced peroxidase activity. Steady-state kinetics analysis demonstrated that the quadruple variant T39I/K45D/F46L/I107F exhibits peroxidase activity significantly greater than that of the wild-type protein with k1 (for H2O2 oxidation of metmyoglobin) of 1. 34 x 10(4) M-1 s-1 ( approximately 25-fold that of wild-type myoglobin) and k3 [for reducing the substrate (2, 2'-azino-di-(3-ethyl)benzthiazoline-6-sulfonic acid] of 1.4 x 10(6) M-1 s-1 (1.6-fold that of wild-type myoglobin). Thermal stability of these variants as measured with circular dichroism spectroscopy demonstrated that the Tm of the quadruple variant is decreased only slightly compared with wild-type (74.1 degreesC vs. 76.5 degreesC). The rate constants for binding of dioxygen exhibited by the quadruple variant are identical to the those observed for wild-type myoglobin (kon, 22.2 x 10(-6) M-1 s-1 vs. 22.3 x 10(-6) M-1 s-1; koff, 24.3 s-1 vs. 24.2 s-1; KO2, 0.91 x 10(-6) M-1 vs. 0.92 x 10(-6) M-1). The affinity of the quadruple variant for CO is increased slightly (kon, 0.90 x 10(-6) M-1s-1 vs. 0.51 x 10(-6) M-1s-1; koff, 5.08 s-1 vs. 3.51 s-1; KCO, 1.77 x 10(-7) M-1 vs. 1.45 x 10(-7) M-1). All four substitutions are in the heme pocket and within 5 A of the heme group.  相似文献   

19.
Hepatocyte growth factor/scatter factor (HGF/SF) is a heparan sulfate (HS)-binding growth factor and morphogen for mammary epithelial cells that is produced by mammary stromal fibroblasts. HS chains, purified as peptidoglycans from a panel of cell lines representative of the ductal epithelial cell (Huma 123), the myoepithelial cell (Huma 109), the stromal fibroblast (Rama 27), and malignant mammary epithelial cells (MCF-7 and ZR-75), were used in a biosensor-based assay to identify the classes of HGF/SF-binding sites in the polysaccharide chains. At least three distinct binding sites were identified. One site exhibits fast association and fast dissociation kinetics [kass (1.4-7.7) x 10(6) M-1 s-1; kdiss 0. 0032-0.0096 s-1] and is present on the HS from benign Huma 123 epithelial cells, Huma 109 myoepithelial-like cells, and ZR-75 malignant cells. The second binding site, found on HS from the malignant MCF-7 cells, has slower HGF/SF-binding kinetics (kass 0.20 x 10(6) M-1 s-1; kdiss 0.00055 s-1). The third binding site possesses fast association and slow dissociation kinetics (kass 1.1 x 10(6) M-1 s-1; kdiss 0.00020 s-1) and was found on the HS isolated from the culture medium of the Huma 123 benign epithelial cells. The first and second binding sites have a similar Kd, 1-3 nM, while the third binding site has a considerably higher affinity for HGF/SF (Kd 200 pM). The three binding sites seem to be mutually exclusive, since each sample of HS possessed just one of the sites.  相似文献   

20.
Human seminal plasma contains two acid-stable proteinase inhibitors, HUSI-II (Mr approximately 6500) and HUSI-I, (Mr approximately 11 000) with different inhibition specificities. The inhibitory activity of HUSI-II is strongly limited to trypsin and acrosin; both enzyme-inhibitor complexes are very stable (e.g. bovine trypsin-HUSI-II complex: Ki = 1 x 10(-10)M; human acrosin-HUSI-II complex: Ki = 2.7 x 10(-10)M). The inhibitor from human seminal plasma HUSI-II may therefore be seen as the natural antagonist of the sperm protease acrosin. In addition to pancreatic trypsin and alpha-chymotrypsin, HUSI-I forms strong complexes with neutral proteases of the lysosome-like granules from human granulocytes, for example, the elastase (Ki = 2.5 x 10(-9)M) and cathepsin G, the chymotrypsin like protease (Ki = 7 x 10(-8)M).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号