共查询到20条相似文献,搜索用时 0 毫秒
1.
Zia A. Kirubarajan T. Reilly J.P. Yee D. Punithakumar K. Shirani S. 《Signal Processing, IEEE Transactions on》2008,56(3):921-936
In most solutions to state estimation problems, e.g., target tracking, it is generally assumed that the state transition and measurement models are known a priori. However, there are situations where the model parameters or the model structure itself are not known a priori or are known only partially. In these scenarios, standard estimation algorithms like the Kalman filter and the extended Kalman Filter (EKF), which assume perfect knowledge of the model parameters, are not accurate. In this paper, the nonlinear state estimation problem with possibly non-Gaussian process noise in the presence of a certain class of measurement model uncertainty is considered. It is shown that the problem can be considered as a special case of maximum-likelihood estimation with incomplete data. Thus, in this paper, we propose an EM-type algorithm that casts the problem in a joint state estimation and model parameter identification framework. The expectation (E) step is implemented by a particle filter that is initialized by a Monte Carlo Markov chain algorithm. Within this step, the posterior distribution of the states given the measurements, as well as the state vector itself, are estimated. Consequently, in the maximization (M) step, we approximate the nonlinear observation equation as a mixture of Gaussians (MoG) model. During the M-step, the MoG model is fit to the observed data by estimating a set of MoG parameters. The proposed procedure, called EM-PF (expectation-maximization particle filter) algorithm, is used to solve a highly nonlinear bearing-only tracking problem, where the model structure is assumed unknown a priori. It is shown that the algorithm is capable of modeling the observations and accurately tracking the state vector. In addition, the algorithm is also applied to the sensor registration problem in a multi-sensor fusion scenario. It is again shown that the algorithm is successful in accommodating an unknown nonlinear model for a target tracking scenario. 相似文献
2.
3.
G0分布是目前合成孔径雷达(Synthetic Aperture Radar,SAR)图像数据建模的一个重要模型,建模能力强、实用性好,受到了广泛的关注.G0分布的应用离不开准确有效的参数估计,而由于G0分布表达式复杂,统计意义上最优的最大似然估计法一直没能用在G0分布上.本文首先给出了一种新的方式来推导得出G0分布,在此基础上,采用最大期望(Expectation Maximization,EM)算法为G0分布给出一种有效的最大似然参数估计方法.文中的方法与现有的G0分布参数估计方法通过实验进行了比较,实验结果充分证明了所提方法的有效性. 相似文献
4.
针对正交频分复用(OFDM)系统中的信道时变,基于时变信道的分段线性近似模型,提出一种改进的OFDM时变信道估计方案。该方案通过采用期望最大化(EM)迭代算法来提高符号平均信道脉冲响应的估计精度,从而提高时变信道估计的性能;此外,在迭代过程中进行带状子载波间干扰抑制,不仅进一步提高了时变信道估计的性能,而且降低了实现复杂度。理论分析和仿真结果表明,该算法以较低的复杂度代价有效提高了时变信道OFDM系统的性能。 相似文献
5.
《Signal Processing, IEEE Transactions on》2009,57(2):463-470
6.
许多应用需要精确地跟踪或计算目标的位置。本文介绍用一种采样加细分的新方法对目标像点进行检测,提出了一种插值的算法对目标位置进行估计,模拟结果表明,定位精度小于0.1个像素。 相似文献
7.
DOA估计的一种改进MUSIC算法 总被引:1,自引:0,他引:1
讨论了在移动通信环境中采用协方差差分和迭代空间平滑以进行信号来波估计(Direction Of Arrival)的一种改进MUSIC算法.首先简要回顾了经典MUSIC算法,给出阵列接收信号模型,然后详细分析了经典MUSIC算法估计相干信号所存在的问题,在常规空间平滑算法(SS)的基础上提出了一种改进算法,最后给出计算机仿真结果并验证了新算法的有效性。 相似文献
9.
研究协同通信系统的信道估计和符号检测技术,提出一种基于EM(Expectation Maximum)算法的半盲信道估计和迭代检测接收方案。它有利于减少协同通信系统的额外系统开销,并能有效提高协同通信的信道估计精度和系统误码性能。 相似文献
10.
运动矢量估计问题是当今一个热点问题,它在诸如视频编码、目标实时跟踪等众多领域都有着广泛的应用,目前普遍采用的估计算法是块匹配算法(BMA)。经典的块匹配算法有顺序排除算法(SEA)和多级顺序排除算法(MSEA),文章在分析两种算法的基础上。对MSEA算法做了两点改进.实验结果表明改进后的算法计算量得到有效的减少,并且保证了估计的准确性。 相似文献
11.
12.
13.
An Application of the EM Algorithm to Degradation Modeling 总被引:4,自引:0,他引:4
Tsan Sheng Ng 《Reliability, IEEE Transactions on》2008,57(1):2-13
We consider a class of degradation processes that can consist of distinct phases of behavior. In particular, the degradation rates could possibly increase or decrease in a non-smooth manner at some point in time when the underlying degradation process changes phase. To model the degradation path of a given device, we use an independent-increments stochastic process with a single unobserved change-point. Furthermore, we assume that the change- point varies randomly from device-to-device. The likelihood functions for such a model are analytically intractable, so in this paper we develop an EM algorithm for this model to obtain the maximum likelihood estimators efficiently. We demonstrate the applicability of the method using two different models, and present some computational results of our implementation. 相似文献
14.
15.
EM算法是一种从"不完全数据"中求解模型参数的极大似然估计的方法,在非高斯噪声的参数估计问题中是一种比较优秀的算法。非高斯噪声的参数估计问题的主要困难是充分统计量是不存在的,这意味着从观测空间到估计空间的映射依赖于这里试图估计的参数。在未知噪声概率密度的情况下,EM算法可以更准确地对非高斯噪声参数进行估计,估计方差接近C-R下界。 相似文献
16.
17.
18.
本文提出在编码器里不用做IDCT和IQ的一种新的运动估值编码算法结构,经计算机仿真和整体性能评估,与传统运动估值编码结构相比较,这个改进的编码结构提高了编码端运动的估算和运动裣的精度和准确度,改善了图象压缩比,降低了硬件成本和运算量。 相似文献
19.
20.
本文提出了一种新的适合于OFDM系统的符号定时估计算法。该算法利用经过特殊处理的前后两段信息序列的内在相关性进行准确的符号定时估计。理论分析和仿真表明,该算法能在大频偏低信噪比的条件下完成定时捕获的任务,并且无需专门的训练符号,从而大大提高了系统传输的效率。 相似文献