首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Ontology creation and management related processes are very important to define and develop semantic services. Ontology Engineering is the research field that provides the mechanisms to manage the life cycle of the ontologies. However, the process of building ontologies can be tedious and sometimes exhaustive. OWL-VisMod is a tool designed for developing ontological engineering based on visual analytics conceptual modeling for OWL ontologies life cycle management, supporting both creation and understanding tasks. This paper is devoted to evaluate OWL-VisMod through a set of defined tasks. The same tasks also will be done with the most known tool in Ontology Engineering, Protégé, in order to compare the obtained results and be able to know how is OWL-VisMod perceived for the expert users. The comparison shows that both tools have similar acceptation scores, but OWL-VisMod presents better feelings regarding user’s perception tasks due to the visual analytics influence.  相似文献   

2.
Co-located collaboration can be extremely valuable during complex visual analytics tasks. We present an exploratory study of a system designed to support collaborative visual analysis tasks on a digital tabletop display. Fifteen participant pairs employed Cambiera, a visual analytics system, to solve a problem involving 240 digital documents. Our analysis, supported by observations, system logs, questionnaires, and interview data, explores how pairs approached the problem around the table. We contribute a unique, rich understanding of how users worked together around the table and identify eight types of collaboration styles that can be used to identify how closely people work together while problem solving. We show how the closeness of teams’ collaboration and communication influenced how they performed on the task overall. We further discuss the role of the tabletop for visual analytics tasks and derive design implications for future co-located collaborative tabletop problem solving systems.  相似文献   

3.
Visual analytics employs interactive visualizations to integrate users’ knowledge and inference capability into numerical/algorithmic data analysis processes.It is an active research field that has applications in many sectors, such as security, finance, and business.The growing popularity of visual analytics in recent years creates the need for a broad survey that reviews and assesses the recent developments in the field.This report reviews and classifies recent work into a set of application categories including space and time, multivariate, text, graph and network, and other applications.More importantly, this report presents analytics space, inspired by design space, which relates each application category to the key steps in visual analytics, including visual mapping, model-based analysis, and user interactions.We explore and discuss the analytics space to add the current understanding and better understand research trends in the field.  相似文献   

4.
Many real-world analysis tasks can benefit from the combined efforts of a group of people. Past research has shown that to design visualizations for collaborative visual analytics tasks, we need to support both individual as well as joint analysis activities. We present Cambiera, a tabletop visual analytics tool that supports individual and collaborative information foraging activities in large text document collections. We define collaborative brushing and linking as an awareness mechanism that enables analysts to follow their own hypotheses during collaborative sessions while still remaining aware of the group's activities. With Cambiera, users are able to collaboratively search through documents, maintaining awareness of each others' work and building on each others' findings.  相似文献   

5.
Despite extensive research, it is still difficult to produce effective interactive layouts for large graphs. Dense layout and occlusion make food Webs, ontologies and social networks difficult to understand and interact with. We propose a new interactive visual analytics component called TreePlus that is based on a tree-style layout. TreePlus reveals the missing graph structure with visualization and interaction while maintaining good readability. To support exploration of the local structure of the graph and gathering of information from the extensive reading of labels, we use a guiding metaphor of "plant a seed and watch it grow." It allows users to start with a node and expand the graph as needed, which complements the classic overview techniques that can be effective at (but often limited to) revealing clusters. We describe our design goals, describe the interface and report on a controlled user study with 28 participants comparing TreePlus with a traditional graph interface for six tasks. In general, the advantage of TreePlus over the traditional interface increased as the density of the displayed data increased. Participants also reported higher levels of confidence in their answers with TreePlus and most of them preferred TreePlus  相似文献   

6.
Designing introductory materials is extremely important when developing new information visualization techniques. All users, regardless of their domain knowledge, first must learn how to interpret the visually encoded information in order to infer knowledge from visualizations. Yet, despite its significance, there has been little research on how to design effective introductory materials for information visualization. This paper presents a study on the design of online guides that educate new users on how to utilize information visualizations, particularly focusing on the employment of exercise questions in the guides. We use two concepts from educational psychology, learning type (or learning style) and teaching method, to design four unique types of online guides. The effects of the guides are measured by comprehension tests of a large group of crowdsourced participants. The tests covered four visualization types (graph, scatter plot, storyline, and tree map) and a complete range of visual analytics tasks. Our statistical analyses indicate that online guides which employ active learning and the top‐down teaching method are the most effective. Our study provides quantitative insight into the use of exercise questions in online guides for information visualizations and will inspire further research on design considerations for other elements in introductory materials.  相似文献   

7.
Predictive analytics embraces an extensive range of techniques including statistical modeling, machine learning, and data mining and is applied in business intelligence, public health, disaster management and response, and many other fields. To date, visualization has been broadly used to support tasks in the predictive analytics pipeline. Primary uses have been in data cleaning, exploratory analysis, and diagnostics. For example, scatterplots and bar charts are used to illustrate class distributions and responses. More recently, extensive visual analytics systems for feature selection, incremental learning, and various prediction tasks have been proposed to support the growing use of complex models, agent‐specific optimization, and comprehensive model comparison and result exploration. Such work is being driven by advances in interactive machine learning and the desire of end‐users to understand and engage with the modeling process. In this state‐of‐the‐art report, we catalogue recent advances in the visualization community for supporting predictive analytics. First, we define the scope of predictive analytics discussed in this article and describe how visual analytics can support predictive analytics tasks in a predictive visual analytics (PVA) pipeline. We then survey the literature and categorize the research with respect to the proposed PVA pipeline. Systems and techniques are evaluated in terms of their supported interactions, and interactions specific to predictive analytics are discussed. We end this report with a discussion of challenges and opportunities for future research in predictive visual analytics.  相似文献   

8.
面对大数据的挑战,力图将人的推理能力和计算系统的数据处理能力相结合的交 互式可视分析研究变得愈发重要。然而目前仍缺乏有效的认知理论来指导面向复杂信息的可视 分析系统的设计,诸如意义构建等现有的理论框架通常着眼于分析行为的外在特征,未能对此 类行为的内在认知机理进行深入研究。因此提出将问题求解作为一种理论框架来解释交互可视 分析行为的基本认知活动,并建议从非良构问题的角度来描述可视分析过程中用户所面临的主 要挑战,还从问题表征及问题求解策略等角度分析了可视分析系统对分析行为的影响。本研究 在理论上,将认知心理学领域的问题求解理论引入到交互可视分析行为的研究中,该方法对设 计面向复杂信息分析的其他类型交互系统也有启示作用;在实践层面上,从问题求解的支持角 度探索了可视分析系统的设计和评估问题。  相似文献   

9.
Building effective classifiers requires providing the modeling algorithms with information about the training data and modeling goals in order to create a model that makes proper tradeoffs. Machine learning algorithms allow for flexible specification of such meta-information through the design of the objective functions that they solve. However, such objective functions are hard for users to specify as they are a specific mathematical formulation of their intents. In this paper, we present an approach that allows users to generate objective functions for classification problems through an interactive visual interface. Our approach adopts a semantic interaction design in that user interactions over data elements in the visualization are translated into objective function terms. The generated objective functions are solved by a machine learning solver that provides candidate models, which can be inspected by the user, and used to suggest refinements to the specifications. We demonstrate a visual analytics system QUESTO for users to manipulate objective functions to define domain-specific constraints. Through a user study we show that QUESTO helps users create various objective functions that satisfy their goals.  相似文献   

10.
When using data-mining tools to analyze big data, users often need tools to support the understanding of individual data attributes and control the analysis progress. This requires the integration of data-mining algorithms with interactive tools to manipulate data and analytical process. This is where visual analytics can help. More than simple visualization of a dataset or some computation results, visual analytics provides users an environment to iteratively explore different inputs or parameters and see the corresponding results. In this research, we explore a design of progressive visual analytics to support the analysis of categorical data with a data-mining algorithm, Apriori. Our study focuses on executing data mining techniques step-by-step and showing intermediate result at every stage to facilitate sense-making. Our design, called Pattern Discovery Tool, targets for a medical dataset. Starting with visualization of data properties and immediate feedback of users’ inputs or adjustments, Pattern Discovery Tool could help users detect interesting patterns and factors effectively and efficiently. Afterward, further analyses such as statistical methods could be conducted to test those possible theories.  相似文献   

11.
Cross-task generalization is a significant outcome that defines mastery in natural language understanding. Humans show a remarkable aptitude for this, and can solve many different types of tasks, given definitions in the form of textual instructions and a small set of examples. Recent work with pre-trained language models mimics this learning style: users can define and exemplify a task for the model to attempt as a series of natural language prompts or instructions. While prompting approaches have led to higher cross-task generalization compared to traditional supervised learning, analyzing ‘bias’ in the task instructions given to the model is a difficult problem, and has thus been relatively unexplored. For instance, are we truly modeling a task, or are we modeling a user's instructions? To help investigate this, we develop LINGO, a novel visual analytics interface that supports an effective, task-driven workflow to (1) help identify bias in natural language task instructions, (2) alter (or create) task instructions to reduce bias, and (3) evaluate pre-trained model performance on debiased task instructions. To robustly evaluate LINGO, we conduct a user study with both novice and expert instruction creators, over a dataset of 1,616 linguistic tasks and their natural language instructions, spanning 55 different languages. For both user groups, LINGO promotes the creation of more difficult tasks for pre-trained models, that contain higher linguistic diversity and lower instruction bias. We additionally discuss how the insights learned in developing and evaluating LINGO can aid in the design of future dashboards that aim to minimize the effort involved in prompt creation across multiple domains.  相似文献   

12.
We present a visual analytics technique to explore graphs using the concept of a data signature. A data signature, in our context, is a multidimensional vector that captures the local topology information surrounding each graph node. Signature vectors extracted from a graph are projected onto a low-dimensional scatterplot through the use of scaling. The resultant scatterplot, which reflects the similarities of the vectors, allows analysts to examine the graph structures and their corresponding real-life interpretations through repeated use of brushing and linking between the two visualizations. The interpretation of the graph structures is based on the outcomes of multiple participatory analysis sessions with intelligence analysts conducted by the authors at the Pacific Northwest National Laboratory. The paper first uses three public domain data sets with either well-known or obvious features to explain the rationale of our design and illustrate its results. More advanced examples are then used in a customized usability study to evaluate the effectiveness and efficiency of our approach. The study results reveal not only the limitations and weaknesses of the traditional approach based solely on graph visualization, but also the advantages and strengths of our signature-guided approach presented in the paper  相似文献   

13.
Over the past decade, computer scientists and psychologists have made great efforts to collect and analyze facial dynamics data that exhibit different expressions and emotions. Such data is commonly captured as videos and are transformed into feature‐based time‐series prior to any analysis. However, the analytical tasks, such as expression classification, have been hindered by the lack of understanding of the complex data space and the associated algorithm space. Conventional graph‐based time‐series visualization is also found inadequate to support such tasks. In this work, we adopt a visual analytics approach by visualizing the correlation between the algorithm space and our goal – classifying facial dynamics. We transform multiple feature‐based time‐series for each expression in measurement space to a multi‐dimensional representation in parameter space. This enables us to utilize parallel coordinates visualization to gain an understanding of the algorithm space, providing a fast and cost‐effective means to support the design of analytical algorithms.  相似文献   

14.
Software evolution is made up of changes carried out during software maintenance. Such accumulation of changes produces substantial modifications in software projects and therefore vast amounts of relevant facts that are useful for the understanding and comprehension of the software project for making additional changes. In this scenario, evolutionary visual software analytics is aimed to support software maintenance, with the active participation of users, through the understanding and comprehension of software evolution by means of visual analytics and human computer interaction. It is a complex process that takes into account the mining of evolutionary data, the subsequent analysis of the mining process results for producing evolution facts, the use of visualizations supported by interaction techniques and the active participation of users. Hence, this paper explains the evolutionary visual software analytics process, describes a framework proposal and validates such proposal through the definition and implementation of an architecture.  相似文献   

15.
Over the past years, an increasing number of publications in information visualization, especially within the field of visual analytics, have mentioned the term “embedding” when describing the computational approach. Within this context, embeddings are usually (relatively) low-dimensional, distributed representations of various data types (such as texts or graphs), and since they have proven to be extremely useful for a variety of data analysis tasks across various disciplines and fields, they have become widely used. Existing visualization approaches aim to either support exploration and interpretation of the embedding space through visual representation and interaction, or aim to use embeddings as part of the computational pipeline for addressing downstream analytical tasks. To the best of our knowledge, this is the first survey that takes a detailed look at embedding methods through the lens of visual analytics, and the purpose of our survey article is to provide a systematic overview of the state of the art within the emerging field of embedding visualization. We design a categorization scheme for our approach, analyze the current research frontier based on peer-reviewed publications, and discuss existing trends, challenges, and potential research directions for using embeddings in the context of visual analytics. Furthermore, we provide an interactive survey browser for the collected and categorized survey data, which currently includes 122 entries that appeared between 2007 and 2023.  相似文献   

16.
Pre‐processing is a prerequisite to conduct effective and efficient downstream data analysis. Pre‐processing pipelines often require multiple routines to address data quality challenges and to bring the data into a usable form. For both the construction and the refinement of pre‐processing pipelines, human‐in‐the‐loop approaches are highly beneficial. This particularly applies to multivariate time series, a complex data type with multiple values developing over time. Due to the high specificity of this domain, it has not been subject to in‐depth research in visual analytics. We present a visual‐interactive approach for preprocessing multivariate time series data with the following aspects. Our approach supports analysts to carry out six core analysis tasks related to pre‐processing of multivariate time series. To support these tasks, we identify requirements to baseline toolkits that may help practitioners in their choice. We characterize the space of visualization designs for uncertainty‐aware pre‐processing and justify our decisions. Two usage scenarios demonstrate applicability of our approach, design choices, and uncertainty visualizations for the six analysis tasks. This work is one step towards strengthening the visual analytics support for data pre‐processing in general and for uncertainty‐aware pre‐processing of multivariate time series in particular.  相似文献   

17.
18.
Knowledge graph, also known as scienti c knowledge graph, can reveal the dynamic development rules in complex knowledge elds. How to clearly present the internal structure of knowledge graph is particularly important, however, the current visualization research based on knowledge graph is rare. In this paper, varieties of data related to education are mined from massive web data, and are fused together. Then knowledge graph which is centered on educational events is constructed utilizing extracted named entities and entity relations. We construct a visual analysis platform for education knowledge graph, EduVis, which can support users to do associated analysis of education, and enable users to obtain the public opinions. In EduVis, we design and implement a) a word cloud treemap to provide an overview of education knowledge graph, b) a layout of events relation network graph based on topological structure and timeline to explore in details, c) a click tracking path to record the history of users'' clicks and help users to backtrack. The case studies show that the aforementioned visual analysis methods for our knowledge graph can meet users'' demands for data analysis tasks.  相似文献   

19.
Guidance is an emerging topic in the field of visual analytics. Guidance can support users in pursuing their analytical goals more efficiently and help in making the analysis successful. However, it is not clear how guidance approaches should be designed and what specific factors should be considered for effective support. In this paper, we approach this problem from the perspective of guidance designers. We present a framework comprising requirements and a set of specific phases designers should go through when designing guidance for visual analytics. We relate this process with a set of quality criteria we aim to support with our framework, that are necessary for obtaining a suitable and effective guidance solution. To demonstrate the practical usability of our methodology, we apply our framework to the design of guidance in three analysis scenarios and a design walk-through session. Moreover, we list the emerging challenges and report how the framework can be used to design guidance solutions that mitigate these issues.  相似文献   

20.
Many cognitive and computational challenges accompany the design of complex engineered systems. This study proposes the many-objective visual analytics (MOVA) framework as a new approach to the design of complex engineered systems. MOVA emphasizes learning through problem reformulation, enabled by visual analytics and many-objective search. This study demonstrates insights gained by evolving the formulation of a General Aviation Aircraft (GAA) product family design problem. This problem’s considerable complexity and difficulty, along with a history encompassing several formulations, make it well-suited to demonstrate the MOVA framework. The MOVA framework results compare a single objective, a two objective, and a ten objective formulation for optimizing the GAA product family. Highly interactive visual analytics are exploited to demonstrate how decision biases can arise for lower dimensional, highly aggregated problem formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号