首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Given an n-node, undirected and 2-edge-connected graph G=(V,E) with positive real weights on its m edges, given a set of k source nodes S?V, and given a spanning tree T of G, the routing cost from S of T is the sum of the distances in T from every source sS to all the other nodes of G. If an edge e of T undergoes a transient failure, and one needs to promptly reestablish the connectivity, then to reduce set-up and rerouting costs it makes sense to temporarily replace e by means of a swap edge, i.e., an edge in G reconnecting the two subtrees of T induced by the removal of e. Then, a best swap edge for e is a swap edge which minimizes the routing cost from S of the tree obtained after the swapping. As a natural extension, the all-best swap edges problem is that of finding a best swap edge for every edge of T, and this has been recently solved in O(mn) time and linear space. In this paper, we focus our attention on the relevant cases in which k=O(1) and k=n, which model realistic communication paradigms. For these cases, we improve the above result by presenting an $\widetilde{O}(m)$ time and linear space algorithm. Moreover, for the case k=n, we also provide an accurate analysis showing that the obtained swap tree is effective in terms of routing cost. Indeed, if the input tree T has a routing cost from V which is a constant-factor away from that of a minimum routing-cost spanning tree (whose computation is a problem known to be in APX), and if in addition nodes in T enjoys a suitable distance stretching property from a tree centroid (which can be constructively induced, as we show), then the tree obtained after the swapping has a routing cost from V which is still a constant-ratio approximation of that of a new (i.e., in the graph deprived of the failed edge) minimum routing-cost spanning tree.  相似文献   

2.
A k-core Ck of a tree T is subtree with exactly k leaves for k?nl, where nl the number of leaves in T, and minimizes the sum of the distances of all nodes from Ck. In this paper first we propose a distributed algorithm for constructing a rooted spanning tree of a dynamic graph such that root of the tree is located near the center of the graph. Then we provide a distributed algorithm for finding k-core of that spanning tree. The spanning tree is constructed in two stages. In the first stage, a forest of trees is generated. In the next stage these trees are connected to form a single rooted tree. An interesting aspect of the first stage of proposed spanning algorithm is that it implicitly constructs the (convex) hull of those nodes which are not already included in the spanning forest. The process is repeated till all non root nodes of the graph have chosen a unique parent. We implemented the algorithms for finding spanning tree and its k-core. A core can be quite useful for routing messages in a dynamic network consisting of a set of mobile devices.  相似文献   

3.
The Swap Edges of a Multiple-Sources Routing Tree   总被引:1,自引:0,他引:1  
Let T be a spanning tree of a graph G and SV(G) be a set of sources. The routing cost of T is the total distance from all sources to all vertices. For an edge e of T, the swap edge of e is the edge f minimizing the routing cost of the tree formed by replacing e with f. Given an undirected graph G and a spanning tree T of G, we investigate the problem of finding the swap edge for every tree edge. In this paper, we propose an O(mlog n+n 2)-time algorithm for the case of two sources and an O(mn)-time algorithm for the case of more than two sources, where m and n are the numbers of edges and vertices of G, respectively.  相似文献   

4.
The average distance of a connected graph G is the average of the distances between all pairs of vertices of G. We present a linear time algorithm that determines, for a given interval graph G, a spanning tree of G with minimum average distance (MAD tree). Such a tree is sometimes referred to as a minimum routing cost spanning tree.  相似文献   

5.
Let Hn be the n-dimensional boolean hypercube with 2n vertices labeled {0, 1, ... 2n − 1}, with an edge between two vertices whenever their Hamning distance is 1. We describe a spanning tree Tn of Hn with the following properties. Tn is complete for the first n − 2 levels with the remaining nodes on level n and n − 1 of the tree. Except for levels n and n − 1, there is a dilation 2 embedding of Hk on level k of Tn. Tn has minimum internal path length with respect to all binary spanning trees of Hn. Finally, each subtree of Tn is contained in the optimal sized subcube of Hn. This collection of almost complete binary trees is important for the implementation of tree-structured computation on hypercube configured multiprocessors.  相似文献   

6.
Suppose that T is a spanning tree of a graph G. T is called a locally connected spanning tree of G if for every vertex of T, the set of all its neighbors in T induces a connected subgraph of G. In this paper, given an intersection model of a circular-arc graph, an O(n)-time algorithm is proposed that can determine whether the circular-arc graph contains a locally connected spanning tree or not, and produce one if it exists.  相似文献   

7.
We consider the problem of planar spanning tree transformation in a two-dimensional plane. Given two planar trees T1 and T2 drawn on a set S of n points in general position in the plane, the problem is to transform T1 into T2 by a sequence of simple changes called edge-flips or just flips. A flip is an operation by which one edge e of a geometric object is removed and an edge f (fe) is inserted such that the resulting object belongs to the same class as the original object. We present two algorithms for planar tree transformations. The first technique is an indirect approach which relies on some ‘canonical’ tree to obtain such transformation results. It is shown that it takes at most 2nms−2 flips (m,s>0) which is an improvement over the result in [D. Avis, K. Fukuda, Reverse search for enumeration, Discrete Applied Mathematics 65 (1996) 21-46]. Second, we present a direct approach which takes at most n−1+k flips (k?0) for such transformation when S in convex position and also show results when the points are in general position. We provide cases where the second technique performs an optimal number of flips. A counterexample is given to show that if |T1?T2|=k then they cannot be transformed to one another by k flips.  相似文献   

8.
We present a uniform approach to design efficient distributed approximation algorithms for various fundamental network optimization problems. Our approach is randomized and based on a probabilistic tree embedding due to Fakcharoenphol et?al. (J Comput Syst Sci 69(3):485–497, 2004) (FRT embedding). We show how to efficiently compute an (implicit) FRT embedding in a decentralized manner and how to use the embedding to obtain efficient expected O(log n)-approximate distributed algorithms for various problems, in particular the generalized Steiner forest problem (including the minimum Steiner tree problem), the minimum routing cost spanning tree problem, and the k-source shortest paths problem. The distributed construction of the FRT embedding is based on the computation of least elements (LE) lists, a distributed data structure that is of independent interest. Assuming a global order on the nodes of a network, the LE-list of a node stores the smallest node (w.r.t. the given order) within every distance d (cf. Cohen in J Comput Syst Sci 55(3):441–453, 1997, Cohen and Kaplan in J Comput Syst Sci 73(3):265–288, 2007). Assuming a random order on the nodes, we give a distributed algorithm for computing LE-lists on a weighted graph with time complexity O(S log n), where S is a graph parameter called the shortest path diameter which can be considered the weighted counterpart of the diameter D of the graph. For unweighted graphs, our LE-lists computation has asymptotically optimal time complexity of O(D). As a byproduct, we get an improved synchronous leader election algorithm for general networks that is both time-optimal and almost message-optimal with high probability.  相似文献   

9.
In this paper we study collective additive tree spanners for special families of graphs including planar graphs, graphs with bounded genus, graphs with bounded tree-width, graphs with bounded clique-width, and graphs with bounded chordality. We say that a graph G=(V,E) admits a system of μ collective additive tree r -spanners if there is a system $\mathcal{T}(G)In this paper we study collective additive tree spanners for special families of graphs including planar graphs, graphs with bounded genus, graphs with bounded tree-width, graphs with bounded clique-width, and graphs with bounded chordality. We say that a graph G=(V,E) admits a system of μ collective additive tree r -spanners if there is a system T(G)\mathcal{T}(G) of at most μ spanning trees of G such that for any two vertices x,y of G a spanning tree T ? T(G)T\in\mathcal{T}(G) exists such that d T (x,y)≤d G (x,y)+r. We describe a general method for constructing a “small” system of collective additive tree r-spanners with small values of r for “well” decomposable graphs, and as a byproduct show (among other results) that any weighted planar graph admits a system of O(?n)O(\sqrt{n}) collective additive tree 0-spanners, any weighted graph with tree-width at most k−1 admits a system of klog 2 n collective additive tree 0-spanners, any weighted graph with clique-width at most k admits a system of klog 3/2 n collective additive tree (2w)(2\mathsf{w}) -spanners, and any weighted graph with size of largest induced cycle at most c admits a system of log 2 n collective additive tree (2?c/2?w)(2\lfloor c/2\rfloor\mathsf{w}) -spanners and a system of 4log 2 n collective additive tree (2(?c/3?+1)w)(2(\lfloor c/3\rfloor +1)\mathsf {w}) -spanners (here, w\mathsf{w} is the maximum edge weight in G). The latter result is refined for weighted weakly chordal graphs: any such graph admits a system of 4log 2 n collective additive tree (2w)(2\mathsf{w}) -spanners. Furthermore, based on this collection of trees, we derive a compact and efficient routing scheme for those families of graphs.  相似文献   

10.
A spanning tree T of a graph G=(V,E) is called a locally connected spanning tree if the set of all neighbors of v in T induces a connected subgraph of G for all vV. The problem of recognizing whether a graph admits a locally connected spanning tree is known to be NP-complete even when the input graphs are restricted to chordal graphs. In this paper, we propose linear time algorithms for finding locally connected spanning trees in cographs, complements of bipartite graphs and doubly chordal graphs, respectively.  相似文献   

11.
The vertex updating problem for a minimum spanning tree (MST) is defined as follows: Given a graphG=(V, E G) and an MSTT forG, find a new MST forG to which a new vertexz has been added along with weighted edges that connectz with the vertices ofG. We present a set of rules that produce simple optimal parallel algorithms that run inO(lgn) time usingn/lgn EREW PRAM processors, wherenV¦. These algorithms employ any valid tree-contraction schedule that can be produced within the stated resource bounds. These rules can also be used to derive simple linear-time sequential algorithms for the same problem. The previously best-known parallel result was a rather complicated algorithm that usedn processors in the more powerful CREW PRAM model. Furthermore, we show how our solution can be used to solve the multiple vertex updating problem: Update a given MST whenk new vertices are introduced simultaneously. This problem is solved inO(lgk·lgn) parallel time using (k·n)/(lgk·lgn) EREW PRAM processors. This is optimal for graphs having (kn) edges.Part of this work was done while P. Metaxas was with the Department of Mathematics and Computer Science, Dartmouth College.  相似文献   

12.
J. C. Hansen  E. Schmutz 《Algorithmica》2001,29(1-2):148-180
Random costsC(i, j) are assigned to the arcs of a complete directed graph onn labeled vertices. Given the cost matrixC n =(C(i, j)), letT* k =T* k (C n ) be the spanning tree that has minimum cost among spanning trees with in-degree less than or equal tok. Since it is NP-hard to findT* k , we instead consider an efficient algorithm that finds a near-optimal spanning treeT k a . If the edge costs are independent, with a common exponential(I) distribution, then, asn → ∞, $$E(Cost(T_k^a {\text{)) = }}E(Cost(T_k^* {\text{)) + }}o\left( 1 \right).$$ Upper and lower bounds forE(Cost(T* k )) are also obtained fork≥2.  相似文献   

13.
The rotation distanced(S,T) between two binary trees S, T of n vertices is the minimum number of rotations to transform S into T. While it is known that d(S,T)?2n−6, a well-known conjecture states that there are trees for which this bound is sharp for any value of n?11. We are unable to prove the conjecture, but we give here some simple criteria for lower bound evaluation, leading for example to individuate some “regular” tree structures for which d(S,T)=3n/2−O(1), or d(S,T)=5n/3−O(1).  相似文献   

14.
The restricted rotation distancedR(S,T) between two binary trees S, T of n vertices is the minimum number of rotations to transform S into T, where rotations take place at the root of S, or at the right child of the root. A sharp upper bound dR(S,T)?4n−8 is known, based on group theory [S. Cleary, J. Taback, Bounding restricted rotation distance, Information Processing Letters 88 (5) (2003) 251-256]. We refine this bound to a sharp dR(S,T)?4n−8−ρSρT, where ρS and ρT are the numbers of vertices in the rightmost vertex chains of the two trees, using an elementary transformation algorithm. We then generalize the concept to k-restricted rotation, by allowing rotations to take place at all the vertices of the highest k levels of the tree, and study the new distance for k=2. The case k?3 is essentially open.  相似文献   

15.
Given an undirected, connected, weighted graph and a positive integer k, the bounded-diameter minimum spanning tree (BDMST) problem seeks a spanning tree of the graph with smallest weight, among all spanning trees of the graph, which contain no path with more than k edges. In general, this problem is NP-Hard for 4 ≤ k < n − 1, where n is the number of vertices in the graph. This work is an improvement over two existing greedy heuristics, called randomized greedy heuristic (RGH) and centre-based tree construction heuristic (CBTC), and a permutation-coded evolutionary algorithm for the BDMST problem. We have proposed two improvements in RGH/CBTC. The first improvement iteratively tries to modify the bounded-diameter spanning tree obtained by RGH/CBTC so as to reduce its cost, whereas the second improves the speed. We have modified the crossover and mutation operators and the decoder used in permutation-coded evolutionary algorithm so as to improve its performance. Computational results show the effectiveness of our approaches. Our approaches obtained better quality solutions in a much shorter time on all test problem instances considered.  相似文献   

16.
In this paper, we investigate three strategies of how to use a spanning tree T of a graph G to navigate in G, i.e., to move from a current vertex x towards a destination vertex y via a path that is close to optimal. In each strategy, each vertex v has full knowledge of its neighborhood N G [v] in G (or, k-neighborhood D k (v,G), where k is a small integer) and uses a small piece of global information from spanning tree T (e.g., distance or ancestry information in T), available locally at v, to navigate in G. We investigate advantages and limitations of these strategies on particular families of graphs such as graphs with locally connected spanning trees, graphs with bounded length of largest induced cycle, graphs with bounded tree-length, graphs with bounded hyperbolicity. For most of these families of graphs, the ancestry information from a Breadth-First-Search-tree guarantees short enough routing paths. In many cases, the obtained results are optimal up to a constant factor.  相似文献   

17.
In this paper we provide improved approximation algorithms for the Min-Max Tree Cover and Bounded Tree Cover problems. Given a graph G=(V,E) with weights w:E→?+, a set T 1,T 2,…,T k of subtrees of G is called a tree cover of G if $V=\bigcup_{i=1}^{k} V(T_{i})$ . In the Min-Max k-tree Cover problem we are given graph G and a positive integer k and the goal is to find a tree cover with k trees, such that the weight of the largest tree in the cover is minimized. We present a 3-approximation algorithm for this improving the two different approximation algorithms presented in Arkin et al. (J. Algorithms 59:1–18, 2006) and Even et al. (Oper. Res. Lett. 32(4):309–315, 2004) with ratio 4. The problem is known to have an APX-hardness lower bound of $\frac{3}{2}$ (Xu and Wen in Oper. Res. Lett. 38:169–173, 2010). In the Bounded Tree Cover problem we are given graph G and a bound λ and the goal is to find a tree cover with minimum number of trees such that each tree has weight at most λ. We present a 2.5-approximation algorithm for this, improving the 3-approximation bound in Arkin et al. (J. Algorithms 59:1–18, 2006).  相似文献   

18.
Let P1,…,Pk be a collection of disjoint point sets in R2 in general position. We prove that for each 1?i?k we can find a plane spanning tree Ti of Pi such that the edges of T1,…,Tk intersect at most , where n is the number of points in P1∪?∪Pk. If the intersection of the convex hulls of P1,…,Pk is nonempty, we can find k spanning cycles such that their edges intersect at most (k−1)n times, this bound is tight. We also prove that if P and Q are disjoint point sets in general position, then the minimum weight spanning trees of P and Q intersect at most 8n times, where |PQ|=n (the weight of an edge is its length).  相似文献   

19.
Given a graph G and a bound d?≥?2, the bounded-diameter minimum spanning tree problem seeks a spanning tree on G of minimum weight subject to the constraint that its diameter does not exceed d. This problem is NP-hard; several heuristics have been proposed to find near-optimal solutions to it in reasonable times. A decentralized learning automata-based algorithm creates spanning trees that honor the diameter constraint. The algorithm rewards a tree if it has the smallest weight found so far and penalizes it otherwise. As the algorithm proceeds, the choice probability of the tree converges to one; and the algorithm halts when this probability exceeds a predefined value. Experiments confirm the superiority of the algorithm over other heuristics in terms of both speed and solution quality.  相似文献   

20.
We present a distributed algorithm that constructs an O(log n)-approximate minimum spanning tree (MST) in any arbitrary network. This algorithm runs in time Õ(D(G) + L(G, w)) where L(G, w) is a parameter called the local shortest path diameter and D(G) is the (unweighted) diameter of the graph. Our algorithm is existentially optimal (up to polylogarithmic factors), i.e., there exist graphs which need Ω(D(G) + L(G, w)) time to compute an H-approximation to the MST for any $H\,\in\,[1, \Theta({\rm log} n)]We present a distributed algorithm that constructs an O(log n)-approximate minimum spanning tree (MST) in any arbitrary network. This algorithm runs in time ?(D(G) + L(G, w)) where L(G, w) is a parameter called the local shortest path diameter and D(G) is the (unweighted) diameter of the graph. Our algorithm is existentially optimal (up to polylogarithmic factors), i.e., there exist graphs which need Ω(D(G) + L(G, w)) time to compute an H-approximation to the MST for any . Our result also shows that there can be a significant time gap between exact and approximate MST computation: there exists graphs in which the running time of our approximation algorithm is exponentially faster than the time-optimal distributed algorithm that computes the MST. Finally, we show that our algorithm can be used to find an approximate MST in wireless networks and in random weighted networks in almost optimal ?(D(G)) time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号