首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
In the present study, the polyimide resin (PI)/cashew-modified resin (YM) polymer-matrix pantograph contact strip (PMPCS) was prepared by using hot repressing, hydro-solidification and dipping treatment processes. The thermal properties of cured resins were studied by thermogravimetry analyzer and differential scanning calorimetry. The thermal wear and electrical sliding wear behaviors of PMPCS against copper were evaluated by a ring block wear tester at elevated temperature under dry sliding conditions and a wear tester which simulated the train motion under laboratory conditions, respectively. Worn surfaces and wear debris of PMPCS were analyzed by scanning electron microscopy and energy dispersive spectrometer, and the wear mechanism was discussed. It has been found that the thermal stability of the PI/YM is superior to that of the YM under the same testing conditions. The results also showed that PI/YM-PMPCS had superior wear resistance than that of YM-PMPCS at elevated temperature and with electrical current. At elevated temperature, the wear mechanism of tribological pair evolved from adhesive wear to oxidative wear with mild delamination wear. Arc erosion wear, oxidative wear, and adhesive wear were the dominant mechanisms of tribological pair during the electrical wearing process.  相似文献   

2.
A series of experimental tests were carried out using stainless steel rubbing against copper-impregnated metallized carbon under electrical current on a pin-on-disc test rig. The test parameters include the sliding speed of 60-100 km/h, normal force of 40-80 N and electrical current of 0-50 A. During testing, the friction coefficient and wear volume were recorded. The topography of worn surfaces was also observed with SEM. The cross sectional profiles of worn surfaces of stainless steel were measured with Ambios profiler. The result displays that electrical current, normal load and sliding speed have a distinct effect on the friction and wear behaviour of stainless steel rubbing against copper-impregnated metallized carbon. Without electric current, the friction coefficient is largest but the wear volume of copper-impregnated metallized carbon is lowest. With increasing electric current, the friction coefficient decreases while the wear volume of copper-impregnated metallized carbon increases. Through the whole test, it is found that the wear loss of stainless steel was light. The wear of copper-impregnated metallized carbon becomes severe when electrical current or sliding speed is high. When the electrical current or sliding speed is high, arc ablation is a dominant wear mechanism of copper-impregnated metallized carbon.  相似文献   

3.
A series of tests on the friction and wear behaviour of pure carbon strip/copper contact wire with alternating current were conducted on a ring-on-block sliding tester at a high speed. The electric current, normal force and sliding velocity have distinct effects on the test results. The worn scar has the smallest size without electric current. The worn scar becomes larger with increasing electric current. Arc ablation pits, dark stream-lines of arc ablation, slipping marks, spalling blocks and the copper-like layer are found on the worn surfaces. Arc erosion, abrasive wear and adhesive wear are main wear mechanisms.  相似文献   

4.
M.O. Kestner 《Wear》1979,53(2):371-375
A glow discharge has been used to prepare metallic surfaces substantially free of adsorbed films derived from the atmosphere to which a lubricant may be applied more uniformly and adherently. As a result of an enhanced surface affinity for lubricating oils, wear was significantly reduced in the cases studied.  相似文献   

5.
In order to minimize the stiction force caused by contact of the extremely smooth surfaces of head sliders and disks in hard disk drives, texture is usually applied on the disk surface. For future contact/near-contact recording, the stiction-induced high friction between slider and disk will become a problem. Texture on the slider/disk interface will still be an expected method to reduce friction. Recently, it was suggested to texture the slider surface. A protective coating is usually required on the textured slider surface to reduce wear of the texture. The results showed that texture on the slider surface was effective in reducing the friction between head sliders and disks. On the other hand, the texture and coating on the slider surface increase the spacing between the read/write element and the magnetic layer of the disk. The necessary and effective texture height and coating thickness are still not clear. In the present research, island-type textures with different heights (3–18 mn) were formed on slider surfaces by ion-beam etching. Amorphous carbon nitride (a-CNx) coatings of different thicknesses (0–50 nm) were coated on the textured slider surfaces as a protective overcoat. The friction and wear properties of these sliders were evaluated by constant-speed drag tests against hard disks coated with diamond-like carbon (DLC). The results show that 2 nm texture on a slider surface is sufficient for low (0.3–0.5) and stable friction of the slider against the disk in a drag test, and coatings thicker than 5 nm show similar wear resistances of the texture on slider surfaces.  相似文献   

6.
The friction and wear performances of brake material dry sliding against semi-interpenetrating network ceramics/Al-alloy composites were determined using a SRV testing machine. For applied loads from 40-160 N, the friction decreased at 100 and 250 °C. The former friction was superior to the latter. Wear increased at 100 °C but decreased at 250 °C, and converged gradually in both cases. Friction fade took place at high temperatures, followed by overrecovery upon cooling. Higher temperatures increased wear. The proposed friction models incorporated with scanning electron microscopy and energy dispersive X-ray analysis explain the test results better.  相似文献   

7.
In this paper the effect of the PV factor (product of contact pressure and peripheral speed) on the wear of carbon brushes was investigated in detail. The wear tests were done on an alternate current (ac) motor. The results show that the wear rate of brushes is proportional to PV factor when PV factor is less than 0.5 MW/m2, but it increases exponentially when PV factor is greater than 0.5 MW/m2. SEM (scanning electron microscope) and EDS (energy dispersive X-ray analysis) were adopted to analyze the worn surface of brushes for different PV factors and a thermocouple was used to measure the temperature of the surface of brushes. These characterizations infer that the mechanical wear of brushes is proportional to PV factor and the electrical wear is mainly caused by damaging the lubricating film, oxidizing the resin binder, weakening the structure of brushes and a low “relative humidity” due to a high temperature on the surface of brushes.  相似文献   

8.
The in-situ observations of wear particle generation of carbon nitride coating on silicon repeatedly sliding against a spherical diamond have been studied in terms of the critical friction cycles and normal loads. An environmental scanning electron microscope (E-SEM), in which a pin-on-disk tribotester was installed, has in-situ provided direct evidence of when and how the wear particle generation do occur during the repeated sliding of carbon nitride coating against a spherical diamond. The in-situ observations of non-conductive carbon nitride coating are therefore available free from surface charging with controllable relative humidity. The repeated sliding tests at a sliding speed of 50 μm/s have been carried out with the purpose of observing the ‘No wear particle generation’ region when varying normal load from 10 to 250 mN. It appears that until 20 friction cycles, the maximum Hertzian contact pressure Pmax for ‘No wear particle generation’ can be improved from 1.39 Y to 1.53 Y if silicon is coated by carbon nitride with a thickness of 10 nm, where Y is defined as the yield strength of silicon. The applicable enlargement of the ‘No wear particle generation’ region of carbon nitride coating has therefore been comparatively discussed with the silicon substrate from the view points of the friction coefficient and the specific wear rate. The mode transition maps have also been summarized for the repeated sliding of carbon nitride coating in terms of ‘No wear particle generation’, ‘Wear particle generation by microcutting’ and ‘Wear particle generation by microcutting and microfracturing’ three typical modes.  相似文献   

9.
Q. Y. Liu  Z. R. Zhou 《Wear》2001,250(1-12):357-361
A new rolling testing apparatus was developed on a tension–compression hydraulic machine with a high precision. The aim of this paper is to study the transition of wear mechanisms of steels with the increase of tangential friction force between contact surfaces in rolling. The wear modes were particularly analyzed during the passage from rolling to mixed rolling–sliding contact.  相似文献   

10.
This paper reports an experimental study of flank wear on TiN- and TiAlN-coated carbide tools in the turning of AISI 1045, AISI 4135, ductile cast iron, and Inconel 718, and it was conducted with the purpose of showing the relationship between the change in wear rate and the loss of coating layer on the cutting edge. It was found that the relation between cutting distance and flank wear in log-log scale clearly shows the change in wear rate, thus providing a straightforward way to determine the relation between worn out coating layer and increase in wear rate. This relation was confirmed by analyzing the presence of coating layer before and after the inflection point appears by means of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) photographs. It was observed that the coating layer on the flank face is worn away and finally is worn out. However, even if the layer on the flank face is worn out, tool wear is suppressed as long as the coating layer on the cutting edge exists. On the other hand, when the coating layer on the cutting edge is worn out, the wear resistance of the tool depends on the substrate; thus, the wear rate increases. According to the results, as the cutting speed increases, the change in wear rate appears in a shorter cutting distance, making flank wear to be high. High pressure and high temperature act on the rake face; thus, thermal stability of the coating layer in the cutting edge is important. A low cutting speed decreases cutting efficiency, but a high cutting speed causes flank wear to be high; therefore, in order to optimize machining cost, an acceptable cutting speed, from the standpoint of tool wear, should be selected.  相似文献   

11.
In this experimental study, the dry sliding wear and two-body abrasive wear behaviour of graphite filled carbon fabric reinforced epoxy composites were investigated. Carbon fabric reinforced epoxy composite was used as a reference material. Sliding wear experiments were conducted using a pin-on-disc wear tester under dry contact condition. Mass loss was determined as a function of sliding velocity for loads of 25, 50, 75, and 100 N at a constant sliding distance of 6000 m. Two-body abrasive wear experiments were performed under multi-pass condition using silicon carbide (SiC) of 150 and 320 grit abrasive papers. The effects of abrading distance and different loads have been studied. Abrasive wear volume and specific wear rate as a function of applied normal load and abrading distance were also determined.The results show that in dry sliding wear situations, for increased load and sliding velocity, higher wear loss was recorded. The excellent wear characteristics were obtained with carbon-epoxy containing graphite as filler. Especially, 10 wt.% of graphite in carbon-epoxy gave a low wear rate. A graphite surface film formed on the counterface was confirmed to be effective in improving the wear characteristics of graphite filled carbon-epoxy composites. In case of two-body abrasive wear, the wear volume increases with increasing load/abrading distance. Experimental results showed the type of counterface (hardened steel disc and SiC paper) material greatly influences the wear behaviour of the composites. Wear mechanisms of the composites were investigated using scanning electron microscopy. Wear of carbon-epoxy composite was found to be mainly due to a microcracking and fiber fracture mechanisms. It was found that the microcracking mechanism had been caused by progressive surface damage. Further, it was also noticed that carbon-epoxy composite wear is reduced to a greater extent by addition of the graphite filler, in which wear was dominated by microplowing/microcutting mechanisms instead of microcracking.  相似文献   

12.
The study aims to explore the effect of tangential force on wear and rolling contact fatigue (RCF) behaviors of wheel material using a JD-1 wheel/rail simulation facility. The normal, tangential and lateral forces between the wheel/rail rollers are controlled, and the magnetic power brake was used to generate the tangential forces (16–330 N). The results indicate that the surface hardness and wear loss of wheel rollers increase with the tangential force increasing. The surface cracks mouths are perpendicular to the resultant directions of the frictional forces. There are visible secondary cracks and multilayer cracks and the interlayer material of multilayer cracks are easy to break. The compositions of wear debris consist of Fe2O3, Fe3O4 and iron.  相似文献   

13.
One binary zinc-aluminium monotectoid and five ternary zinc-aluminium-copper alloys were produced by permanent mould casting. Their wear properties were examined using a block-on-ring test machine. Hardness, tensile strength and percentage elongation of the alloys were also determined and microhardness of aluminium-rich α phase was measured.It was observed that the hardness of the alloys increased continuously with increasing copper content up to 5%. Their tensile strength also increased with increasing copper content up to 2%, but above this level the strength decreased as the copper content increased further. Microhardness of the aluminium-rich α phase was also affected by the copper content in a manner similar to that of the tensile strength. It was found that the wear loss of the alloys decreased with increasing copper content and reached a minimum at 2% Cu for a sliding distance of 700 km. However, the coefficient of friction and temperature due to frictional heating were found to be generally less for the copper containing alloys than the one without the element. The effect of copper on the wear behaviour of the alloys was explained in terms of their microstructure, hardness, tensile strength, percentage elongation and microhardness of the α phase.  相似文献   

14.
In order to get homogeneous pores distribution of friction materials, four kinds of micron-level carbon fibers reinforced paper-based friction materials were prepared. Experimental results showed that the porosity of samples decreased with the increase of carbon fiber content. Pores formed in micrometer-level fibers reinforced friction materials were more regular than friction materials reinforced by millimeter-level fibers. The tensile strength of samples decreased with the increase of carbon fiber content. The wear rate of samples increased with the increase of carbon fiber content. The sample with 55% carbon fibers exhibited the best friction stability and anti-shudder performance under oil lubricated conditions.  相似文献   

15.
J. Paulo Davim  Rosária Cardoso 《Wear》2009,266(7-8):795-799
PEEK (poly-ether-ether-ketone) is a high performance engineering semicrystalline thermoplastic. PEEK has excellent tribological behaviour, which is optimised in the specially formulated tribological composite grade.This paper presents a comparative study of wear and friction on PEEK, PEEK-CF30 (wt%) and PEEK-GF30 (wt%) against steel, at long dry sliding. A plan of experiments was performed on a pin-on-disc machine, under the following conditions pv=2MPam/s (p = 8 MPa and v=0.25m/s; p = 2.68 MPa and v=0.75m/s) at the ambient temperature for a sliding distance of 15 km.PEEK-CF30 presented the lesser friction coefficient followed by PEEK. PEEK-GF30 presented the higher friction coefficient throughout all sliding distance. Both PEEK-CF30 and PEEK-GF30 have presented an excellent wear resistance relatively to PEEK while PEEK-CF30 presented the best tribological behaviour.  相似文献   

16.
E. Albertin  A. Sinatora 《Wear》2001,250(1-12):492-501
The effect of carbide volume fraction from 13 to 41% on the wear resistance of high chromium cast irons was evaluated by means of ball mill testing. Martensitic, pearlitic and austenitic matrices were evaluated.

The 50-mm diameter balls were tested simultaneously in a 40 cm diameter ball mill. Hematite, phosphate rock and quartz sand were wet ground. The tests were conducted for 200 h.

Quartz sand caused the highest wear rates, ranging from 6.5 to 8.6 μm/h for the martensitic balls, while the wear rates observed for the phosphate rock ranged from 1.4 to 2.9 μm/h.

Increasing the carbide volume fraction resulted in decreased wear rates for the softer abrasives. The almost complete protection of the matrix by carbides in eutectic microstructures caused the eutectic alloy to present the best performance against hematite or phosphate rock. The opposite effect was observed for the quartz sand. The quartz abrasive rapidly wears out the matrix, continuously exposing and breaking carbide branches. A martensitic steel presented the best performance against the quartz abrasive.

With phosphate rock, the wear rate of 30% carbide cast irons increased from 1.46 to 2.84 and to 6.39 μm/h as the matrix changed, respectively, from martensitic to austenitic and to pearlitic. Wear profiles of worn balls showed that non-martensitic balls presented deep subsurface carbide cracking, due to matrix deformation. Similar behavior was observed in the tests with the other abrasives.

In pin-on-disc tests, austenitic samples performed better than the martensitic ones. This result shows that pin tests in the presence of retained austenite can be misleading.  相似文献   


17.
Hiroki Endo 《Wear》2005,258(10):1525-1530
Engineering plastics which have been shown to have good mechanical properties are now frequently used as materials for various machine elements. Engineering plastics are combined with other engineering plastics and metallic materials for machine construction. These machine elements are fabricated with contact surface forms, such as convex, concave, and plane surfaces. Therefore, when designing machines with a combination of materials containing engineering plastics, it is useful to know the wear and friction characteristics for various contact surface forms. In the present research, polyacetal (POM), an engineering plastic, and carbon steel, a metal often used for machine structures, were chosen as materials to study wear and friction. Wear tests were performed in the combination of a convex surface and a plane, and in the combination of a plane and a plane. As a result, some features of the wear and friction characteristic are clarified. (1) The worn mass when the flat specimen made of POM is rubbed by the POM pin specimen is larger than when with the pin specimen made of carbon steel. (2) When the flat specimen made of POM is rubbed by the POM or the carbon steel pin specimen, the same grade of wear is observed regardless of the pin specimen material. (3) The worn length of the steel spherical pin specimen on the steel flat specimen becomes close to the initial radius of the curvature of the pin specimen when the sliding distance is large. The initial condition of the spherical tip pin specimen on the flat specimen evolves toward a condition of the flat tip pin specimen on the flat specimen. So, the comparison between the two geometries is non-relevant. Such problem did not occur in POM pin specimen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号