首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we investigate a large cooperative wireless network with relay nodes, in which cooperation is enabled through physical-layer network coding (PLNC). Specifically, we study the impact of the relay selection on the network capacity with power constraints in two scenarios. First, we consider the basic PLNC model (a.k.a., the ARB model), in which one pair of source nodes (A,?B) exchange messages via a selected relay node (R). Given the power constraint, we derive the optimal relay selection and power allocation that maximize the sum capacity, defined as the summation of the capacity for two source-destination channels. Based on results obtained above, we then consider a more general scenario with multiple pairs of source nodes. Assuming the constant power constraint, we derive the upper bound of the minimal sum capacity of any source pair. The optimal power allocation among multiple source pairs is also derived. To validate these theoretical results, we also provide two relay selection strategies: a modified optimal relay assignment strategy and a novel middle point strategy for maximizing the minimal sum capacity of any source pair.  相似文献   

2.
Multiple Peer-to-Peer Communications Using a Network of Relays   总被引:1,自引:0,他引:1  
We consider an ad hoc wireless network consisting of d source-destination pairs communicating, in a pairwise manner, via R relaying nodes. The relay nodes wish to cooperate, through a decentralized beamforming algorithm, in order to establish all the communication links from each source to its respective destination. Our communication strategy consists of two steps. In the first step, all sources transmit their signals simultaneously. As a result, each relay receives a noisy faded mixture of all source signals. In the second step, each relay transmits an amplitude- and phase-adjusted version of its received signal. That is each relay multiply its received signal by a complex coefficient and retransmits the so-obtained signal. Our goal is to obtain these complex coefficients (beamforming weights) through minimization of the total relay transmit power while the signal-to-interference-plus-noise ratio (SINR) at the destinations are guaranteed to be above certain predefined thresholds. Although such a power minimization problem is not convex, we use semidefinite relaxation to turn this problem into a semidefinite programming (SDP) problem. Therefore, we can efficiently solve the SDP problem using interior point methods. Our numerical examples reveal that for high network data rates, our space division multiplexing scheme requires significantly less total relay transmit power compared to other orthogonal multiplexing schemes, such as time-division multiple access schemes.  相似文献   

3.
孙立悦  赵晓晖  虢明 《通信学报》2013,34(10):10-91
研究了功率受限情况下多中继协作通信网络的中继选择和功率优化问题。在AF网络中,提出了一种低复杂度中继选择与功率分配算法,其目标是在总功率一定的条件下使系统的中断概率最小。本算法对源节点和所有潜在中继节点进行功率分配,结合当前信噪比选择最优的中继集合,通过最速下降法求出使系统中断概率最低的功率分配因子。该算法不需要知道大量瞬时信道信息、不需要系统在等功率条件下进行中继选择,只需求得中继节点排列矩阵便可根据当前信噪比自适应获得最优中继节点集合。仿真结果表明,在相同条件下,该算法明显优于不同中继节点集合下几种算法的中断性能,并且与传统的SAF及AAF算法相比,有效降低了中断概率,提升了系统性能和功率效率。  相似文献   

4.
杨玲香  姚斌 《激光杂志》2014,(12):103-106
协作通信与直接通信相比能够显著地提高系统性能,功率分配是协作通信中的一个关键问题。为了获得合理的协作中继通信系统功率分配方案,提出一种基于改进蛙跳算法的多中继节点功率分配方法。首先对功率分配问题进行分析,将其转换为一个非线性优化问题,然后将青蛙表示为源节点,中继节点的功率,以平均信噪比作为青蛙的食物,并通过青蛙的信息交流和协作找到最优的功率分配方案,最后采用仿真对比实验对本文算法性能进行测试。仿真结果表明,相对于其它功率分配方法,改进蛙跳算法有效地提高了系统的信道容量,降低了中断概率,以较低的复杂度提高了系统的性能。  相似文献   

5.
In this paper, we consider a wireless communication scenario with multiple source-destination pairs communicating through several cooperative amplify-and-forward relay terminals. The relays are equipped with multiple antennas that receive the source signals and transmit them to the destination nodes. We develop two iterative relay beamforming algorithms that can be applied in real-time. In both algorithms, the relay beamforming matrices are jointly designed by minimizing the received power at all the destination nodes while preserving the desired signal at each destination. The first algorithm requires the existence of a local processing center that computes the beamforming coefficients of all the relays. In the second algorithm, each relay can compute its beamforming coefficients locally with the help of some common information that is broadcasted from the other relays. This is achieved at the expense of enforcing the desired signal preservation constraints non-cooperatively. We provide two extensions of the proposed algorithms that allow the relays to control their transmission power and to modify the quality of service provided to different sources. Simulation results are presented validating the ability of the proposed algorithms to perform their beamforming tasks efficiently and to track rapid changes in the operating environment.  相似文献   

6.
施玉晨  白宝明 《信号处理》2011,27(3):407-411
针对反射、散射影响下的非对称无线协作通信网络,提出了一种时变功率分配(Time Variant Power Allocation, TVPA)算法。根据无线协作网络中,各节点之间信道条件实时变化且不对称的特点,在信号传输过程中对信源节点和中继节点的发送信号功率进行优化分配。借助信道编码定理,将系统错误概率最小的非凸优化问题转化为最大化系统容量的凸优化问题来解。与固定功率分配(Fixed Power Allocation, FXPA)算法和平均功率分配(Average Power Allocation, AVPA)算法相比,该算法能充分利用无线信道的时变特性,重新分配功率以降低系统错误概率。在多种网络模型中的仿真结果表明,准静态瑞利衰落信道下,相比于FXPA算法,TVPA算法可获得多达5.5dB的比特错误概率性能增益。随着网络质量的进一步改善,该性能优势也逐步增大。   相似文献   

7.
该文研究频率选择性信道中多用户点对点分布式中继网络波束形成技术。为了均衡源节点与中继节点以及中继节点与目标节点之间的频率选择性信道,该文提出的波束形成技术在中继节点上采用有限长响应滤波器和滤波而后转发的中继数据传输方法,以最小化中继节点的发射总功率为目标,同时满足所有目标节点的服务质量(QoS)。该波束形成优化问题的直接形式由于其非凸性而难以求得最优解。该文采用半定松弛(SDP)方法将其近似为凸优化问题,进而可以用内点法高效快速求解。仿真结果表明,相较于传统的放大而后转发的波束形成技术,所提波束形成方法能有效提高频率选择性信道中多用户中继网络的性能。  相似文献   

8.
We study the problem of optimizing the symbol error probability (SEP) performance of cluster‐based cooperative wireless sensor networks. Recent studies in literature show that an efficient relay selection protocol based on simple geographical information of the nodes to execute cooperative diversity can significantly improve the SEP performance at the destination of such networks. As well, similar line of research on optimal power allocation (for the source and relay nodes) can be found in literature. However, to achieve the best SEP performance at the destination of a cooperative wireless sensor network, joint optimization of power allocation and relay placement should be accomplished. To this aim, we reformulate the SEP of a multi‐hop cooperative communication in a general form and optimize transmitted power level and relay placement simultaneously. This analysis is developed for both amplify‐and‐forward and decode‐and‐forward relaying protocols. Simulation results demonstrate that the proposed joint optimization can effectively improve the SEP performance of the network. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
This paper studies optimal resource allocation for multiple network‐coded two‐way relay in orthogonal frequency division multiplexing systems. All the two‐way relay nodes adopt amplify‐and‐forward and operate with analog network coding protocol. A joint optimization problem considering power allocation, relay selection, and subcarrier pairing to maximize the sum capacity under individual power constraints at each transmitter or total network power constraint is first formulated. By applying dual method, we provide a unified optimization framework to solve this problem. With this framework, we further propose three low‐complexity suboptimal algorithms. The complexity of the proposed optimal resource allocation (ORA) algorithm and three suboptimal algorithms are analyzed, and it is shown that the complexity of ORA is only a polynomial function of the number of subcarriers and relay nodes under both individual and total power constraints. Simulation results demonstrate that the proposed ORA scheme yields substantial performance improvement over a baseline scheme, and suboptimal algorithms can achieve a trade‐off between performance and complexity. The results also indicate that with the same total network transmit power, the performance of ORA under total power constraint can outperform that under individual power constraints. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Node cooperation is an emerging and powerful solution that can overcome the limitation of wireless systems as well as improve the capacity of the next generation wireless networks. By forming a virtual antenna array, node cooperation can achieve high antenna and diversity gains by using several partners to relay the transmitted signals. There has been a lot of work on improving the link performance in cooperative networks by using advanced signal processing or power allocation methods among a single source node and its relays. However, the resource allocation among multiple nodes has not received much attention yet. In this paper, we present a unified crosslayer framework for resource allocation in cooperative networks, which considers the physical and network layers jointly and can be applied for any cooperative transmission scheme. It is found that the fairness and energy constraint cannot be satisfied simultaneously if each node uses a fixed set of relays. To solve this problem, a multi-state cooperation methodology is proposed, where the energy is allocated among the nodes state-by-state via a geometric and network decomposition approach. Given the energy allocation, the duration of each state is then optimized so as to maximize the nodes utility. Numerical results will compare the performance of cooperative networks with and without resource allocation for cooperative beamforming and selection relaying. It is shown that without resource allocation, cooperation will result in a poor lifetime of the heavily-used nodes. In contrast, the proposed framework will not only guarantee fairness, but will also provide significant throughput and diversity gain over conventional cooperation schemes.  相似文献   

11.
This paper studies the wireless two-way relay channel (TWRC), where two source nodes, S1 and S2, exchange information through an assisting relay node, R. It is assumed that R receives the sum signal from S1 and S2 in one timeslot, and then amplifies and forwards the received signal to both S1 and S2 in the next time-slot. By applying the principle of analogue network coding (ANC), each of S1 and S2 cancels the so-called "self-interference" in the received signal from R and then decodes the desired message. Assuming that S1 and S2 are each equipped with a single antenna and R with multi-antennas, this paper analyzes the capacity region of the ANC-based TWRC with linear processing (beamforming) at R. The capacity region contains all the achievable bidirectional rate-pairs of S1 and S2 under the given transmit power constraints at S1, S2, and R. We present the optimal relay beamforming structure as well as an efficient algorithm to compute the optimal beamforming matrix based on convex optimization techniques. Low-complexity suboptimal relay beamforming schemes are also presented, and their achievable rates are compared against the capacity with the optimal scheme.  相似文献   

12.
Greedy scheduling performance for a zero-forcing dirty-paper coded system   总被引:1,自引:0,他引:1  
This letter presents two results for multiuser wireless systems employing dirty-paper coding strategies along with greedy scheduling over the broadcast multiple-input multiple-output channel. Specifically, an efficient and suboptimal downlink scheduler is proposed to approximate the maximum sum rate using equal power allocation, and it is shown to approach the maximum sum rate of optimal power allocation for a large number of users under optimal scheduling. The second result demonstrates that the average maximum sum rate can be tightly upper bounded when spatial multiplexing is maximized.  相似文献   

13.
This paper investigates the joint source, relay precoder and receive filters optimization, aiming to maximize the weighted sum rate (WSR) for non-regenerative downlink multiuser MIMO relay network with source-destination direct link. The joint transceiver is developed taking both the direct link and the relay link into consideration with individual source and relay power constraints. Since the WSR problem is generally non-convex and intractable, it’s difficult to solve directly. Inspired by the recent results of relationship between the mutual information and the mean-square-error, we reformulate the WSR problem into a weighted sum mean square error minimization problem. An iterative algorithm is developed to solve the WSR problem. Simulation results demonstrate that the proposed algorithm offers significant performance gain over existing methods. In addition, we also propose a modified robust joint transceiver design against the imperfect channel state information.  相似文献   

14.
在未来无线通信网络中,协作通信的性能依赖于通信资源的有效分配,比如中继选择和功率控制等.在本文中,我们建议了一个分布式买者和卖者博弈理论框架,以满足用户链路质量需求为基础,解决多用户协作通信中最优化中继选择和功率控制.本文联合考虑了源节点和中继节点的功率分配,进而优化源节点和中继节点的收益.这里提出的方法不仅有助于源节点找到相对位置较好的中继节点以及在源和中继之间进行最优化功率分配从而最小化源节点的支付,而且有助于相互竞争的中继节点提供优化的价格以最大化它们各自的收益.此外,这里的优化价格可以仅由局部信道状态信息和其他节点的能量价格决定.如果获得的中继节点总数增加,全网的能量消耗会更低.  相似文献   

15.
Cooperation Strategies and Resource Allocations in Multiuser OFDMA Systems   总被引:1,自引:0,他引:1  
Cooperative communication and orthogonal frequency-division multiplexing (OFDM) technology are both promising candidates for next-generation wireless communication systems. In this paper, we investigate cooperation strategies and resource-allocation algorithms for multiuser cooperative orthogonal frequency-division multiple-access (OFDMA) systems. There are two major contributions of this paper. First, we propose a novel cooperation strategy for the OFDMA system. When there are two users in the system, the strategy achieves the capacity region upper bound for decode-and-forward (DF) cooperation. When there are multiple users in the system, the strategy can achieve near upper-bound performance in certain network topologies. Moreover, the strategy always outperforms those that are previously proposed for cooperative OFDMA systems. The second contribution is that we develop novel centralized resource-allocation algorithms for cooperative OFDMA systems. The advantages of the algorithms are that they not only simultaneously solve relay, power, and subcarrier allocation but also have complexity that increases only linearly with the number of subcarriers in the systems.   相似文献   

16.
This paper considers a wireless cooperative cellular data network with a base station and many subscribers in which the subscribers have the ability to relay information for each other to improve the overall network performance. For a wireless network operating in a frequency-selective slow-fading environment, the choices of relay node, relay strategy, and the allocation of power and bandwidth for each user are important design parameters. The design challenge is compounded further by the need to take user traffic demands into consideration. This paper proposes a centralized utility maximization framework for such a network. We show that for a cellular system employing orthogonal frequency-division multiple-access (OFDMA), the optimization of physical-layer transmission strategies can be done efficiently by introducing a set of pricing variables as weighting factors. The proposed solution incorporates both user traffic demands and the physical channel realizations in a cross-layer design that not only allocates power and bandwidth optimally for each user, but also selects the best relay node and best relay strategy (i.e. decode-and-forward vs. amplify-and-forward) for each source-destination pair  相似文献   

17.
In this paper, the problem of distributed beamforming is considered for a wireless network which consists of a transmitter, a receiver, and $r$ relay nodes. For such a network, assuming that the second-order statistics of the channel coefficients are available, we study two different beamforming design approaches. As the first approach, we design the beamformer through minimization of the total transmit power subject to the receiver quality of service constraint. We show that this approach yields a closed-form solution. In the second approach, the beamforming weights are obtained through maximizing the receiver signal-to-noise ratio (SNR) subject to two different types of power constraints, namely the total transmit power constraint and individual relay power constraints. We show that the total power constraint leads to a closed-form solution while the individual relay power constraints result in a quadratic programming optimization problem. The later optimization problem does not have a closed-form solution. However, it is shown that using semidefinite relaxation, this problem can be turned into a convex feasibility semidefinite programming (SDP), and therefore, can be efficiently solved using interior point methods. Furthermore, we develop a simplified, thus suboptimal, technique which is computationally more efficient than the SDP approach. In fact, the simplified algorithm provides the beamforming weight vector in a closed form. Our numerical examples show that as the uncertainty in the channel state information is increased, satisfying the quality of service constraint becomes harder, i.e., it takes more power to satisfy these constraints. Also our simulation results show that when compared to the SDP-based method, our simplified technique suffers a 2-dB loss in SNR for low to moderate values of transmit power.   相似文献   

18.
程英  李光球  沈静洁  韦亮 《电信科学》2021,37(9):95-104
针对合谋窃听场景下单天线多中继修改转发(MF)协作无线系统的安全性能较差问题,提出一种合谋窃听场景下联合源节点发送天线选择(TAS)和多中继选择的MF协作物理层安全系统,考虑最优的最大化主信道信噪比(SNR)和次优的最大化源节点-中继节点链路 SNR 两种中继选择方案,推导其安全中断概率(SOP)和遍历安全容量(ESC)的解析表达式。最优或次优中继选择的MF安全中继系统的SOP和ESC的数值计算结果与仿真结果相吻合,验证了上述理论分析的正确性;同时也表明源节点发射天线数和中继节点数越多、窃听节点数越少,最优或次优中继选择的MF安全中继系统的物理层安全性能越好。  相似文献   

19.
Cooperative diversity using distributed space-time codes has been recently proposed to form virtual antennas in order to achieve diversity gain. In this paper, we consider a multi-relay network operating in amplify-and-forward (AAF) mode. Motivated by protocol III presented in (Nabar et al. 2004), we propose a cooperative diversity protocol implementing space–time coding for an arbitrary number of relay nodes when the source-destination link contributes in the second phase. We consider the use of real-orthogonal and quasi-orthogonal designs of space–time codes as they give better performance than random linear-dispersion codes. The pairwise error probability (PEP) has been derived and the theoretical analysis demonstrates that the proposed protocol achieves a diversity of order N + 1, where N is the number of relay nodes. No instantaneous channel state information is required at the relay nodes. The optimum power allocation that minimizes the PEP is obtained with numerical and theoretical analysis. The aggregate system power constraint is considered in the optimization. Simulation results demonstrate an improvement over the existing orthogonal protocols for different source-destination channel conditions. The results also show that the proposed scheme is robust to the channel estimation errors  相似文献   

20.
Half‐duplex amplify‐and‐forward (AF) transmissions may result in insufficient use of degrees of freedom if they always use the cooperative mode regardless of the fading states. In this paper, we investigate the conditions under which cooperation offers better performance and the corresponding optimal power allocation during cooperation. Specifically, we first derive an expression of ergodic capacity and its upper bound for an AF cooperative communication system with n relay nodes. Secondly, we propose a novel quasi‐optimal power allocation (QOPA) scheme to maximize the upper bound of the derived ergodic capacity. For the QOPA scheme, the cooperative mode is only adopted when the channel gain of source‐to‐destination is worse than that of relay‐to‐destination. Moreover, we analyze the performance of the system with QOPA scheme when the relay moves, which is based on the random direction model, in a single‐relay wireless network. For a multi‐relay AF network, we compare the ergodic capacity and symbol error rate, corresponding to the proposed QOPA and equal power allocation schemes, respectively. Extensive simulations were conducted to validate analytical results, showing that both ergodic capacity and symbol error rate of the system with QOPA scheme are better than those of the system with equal power allocation scheme in a multi‐relay AF network. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号