首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 93 毫秒
1.
Drill wear not only affects the surface smoothness of the hole, but also influences the life of the drill. Drill wear state recognition is important in the manufacturing process, which consists of two steps: first, decomposing cutting torque components from the original signals by wavelet packet decomposition (WPD); second, extracting wavelet coefficients of different wear states (i. e. , slight, normal, or severe wear) with signal features adapting to Welch spectrum. Finally, monitoring and recognition of the feature vectors of cutting torque signal are performed by using the K-means cluster and radial basis function neural network (RBFNN). The experiments on different tool wears of the multivariable features reveal that the results of monitoring and recognition are significant and effective.  相似文献   

2.
针对复杂时间信号动态模式分类问题,提出了一种基于局部核函数与全局核函数组合的径向基过程神经网络(RBFPNN)模型。考虑时间信号过程特征的多样性和复杂性,以及核函数对信号分布形态特征的局部与全局表征能力,通过将具有全局性质的多项式核函数与具有局部性质的高斯核函数进行线性叠加,构成组合核函数,以此建立一种新的径向基过程神经网络,从信息模型上改善RBFPNN对动态样本复杂过程特征的抽取和记忆性质,提高网络对时间信号特征的辨识能力。分析了基于RBFPNN的性质,建立了基于混沌遗传算法CGA的模型参数优化算法。以基于示功图的往复运动机械工作状态诊断为例,实际资料处理结果验证了模型和算法的有效性。  相似文献   

3.
A novel method based on rough sets (RS) and the affinity propagation (AP) clustering algorithm is developed to optimize a radial basis function neural network (RBFNN). First, attribute reduction (AR) based on RS theory, as a preprocessor of RBFNN, is presented to eliminate noise and redundant attributes of datasets while determining the number of neurons in the input layer of RBFNN. Second, an AP clustering algorithm is proposed to search for the centers and their widths without a priori knowledge about the number of clusters. These parameters are transferred to the RBF units of RBFNN as the centers and widths of the RBF function. Then the weights connecting the hidden layer and output layer are evaluated and adjusted using the least square method (LSM) according to the output of the RBF units and desired output. Experimental results show that the proposed method has a more powerful generalization capability than conventional methods for an RBFNN.  相似文献   

4.
Traditional pattern recognition (PR) systems work with the model that the object to be recognized is characterized by a set of features, which are treated as the inputs. In this paper, we propose a new model for PR, namely one that involves chaotic neural networks (CNNs). To achieve this, we enhance the basic model proposed by Adachi (Neural Netw 10:83–98, 1997), referred to as Adachi’s Neural Network (AdNN), which though dynamic, is not chaotic. We demonstrate that by decreasing the multiplicity of the eigenvalues of the AdNN’s control system, we can effectively drive the system into chaos. We prove this result here by eigenvalue computations and the evaluation of the Lyapunov exponent. With this premise, we then show that such a Modified AdNN (M-AdNN) has the desirable property that it recognizes various input patterns. The way that this PR is achieved is by the system essentially sympathetically “resonating” with a finite periodicity whenever these samples (or their reasonable resemblances) are presented. In this paper, we analyze the M-AdNN for its periodicity, stability and the length of the transient phase of the retrieval process. The M-AdNN has been tested for Adachi’s dataset and for a real-life PR problem involving numerals. We believe that this research also opens a host of new research avenues. Research partially supported by the Natural Sciences and Engineering Research Council of Canada.
Dragos Calitoiu (Corresponding author)Email:
B. John OommenEmail:
Doron NussbaumEmail:

Dragos Calitoiu   was born in Iasi, Romania on May 7, 1968. He obtained his Electronics degree in 1993 from the Polytechnical University of Bucharest, Romania, and the Ph. D. degree in 2006, from Carleton University, in Ottawa, Canada. He is currently a Postdoctoral Fellow with the Health Policy Research Division of Health Canada. His research interests include Pattern Recognition, Machine Learning, Learning Automata, Chaos Theory and Computational Neuroscience. B. John Oommen   was born in Coonoor, India on September 9, 1953. He obtained his B. Tech. degree from the Indian Institute of Technology, Madras, India in 1975. He obtained his M. E. from the Indian Institute of Science in Bangalore, India in 1977. He then went on for his M. S. and Ph. D. which he obtained from Purdue University, in West Lafayettte, Indiana in 1979 and 1982, respectively. He joined the School of Computer Science at Carleton University in Ottawa, Canada, in the 1981–1982 academic year. He is still at Carleton and holds the rank of a Full Professor. His research interests include Automata Learning, Adaptive Data Structures, Statistical and Syntactic Pattern Recognition, Stochastic Algorithms and Partitioning Algorithms. He is the author of more than 260 refereed journal and conference publications and is a Fellow of the IEEE and a Fellow of the IAPR. Dr. Oommen is on the Editorial Board of the IEEE Transactions on Systems, Man and Cybernetics, and Pattern Recognition. Doron Nussbaum   received his B.Sc. degree in mathematics and computer science from the University of Tel-Aviv, Israel in 1985, and the M. C. S. and Ph. D. degrees in computer science from Carleton University, Ottawa, Canada in 1988 and 2001, respectively. From 1988 to 1991 he worked for Tydac Technologies as a Manager of Research and Development. His work at Tydac focused on the development of a geographical information system. From 1991 to 1994, he worked for Theratronics as senior software consultant where he worked on the company’s cancer treatment planning software (Theraplan). From 1998 to 2001 he worked for SHL Systemshouse as a senior technical architect. In 2001 he joined the School of Computer Science at Carleton University as an Associate Professor. Dr. Nussbaum’s main research interests are medical computing, computational geometry, robotics and algorithms design.   相似文献   

5.
This paper developed a fast and adaptive method for SAR complex image denoising based on l k norm regularization, as viewed from parameters estimation. We firstly establish the relationship between denoising model and ill-posed inverse problem via convex half-quadratic regularization, and compare the difference between the estimator variance obtained from the iterative formula and biased Cramer-Rao bound, which proves the theoretic flaw of the existent methods of parameter selection. Then, the analytic expression of the model solution as the function with respect to the regularization parameter is obtained. On this basis, we study the method for selecting the regularization parameter through minimizing mean-square error of estimators and obtain the final analytic expression, which resulted in the direct calculation, high processing speed, and adaptability. Finally, the effect of regularization parameter selection on the resolution of point targets is analyzed. The experiment results of simulation and real complex-valued SAR images illustrate the validity of the proposed method. Supported by the National Natural Science Foundation of China (Grant No. 60572136), the Fundamental Research Fund of NUDT (Grant No. JC0702005)  相似文献   

6.
Blasting operation is widely used method for rock excavation in mining and civil works. Ground vibration and air-overpressure (AOp) are two of the most detrimental effects induced by blasting. So, evaluation and prediction of ground vibration and AOp are essential. This paper presents a new combination of artificial neural network (ANN) and K-nearest neighbors (KNN) models to predict blast-induced ground vibration and AOp. Here, this combination is abbreviated using ANN-KNN. To indicate performance of the ANN-KNN model in predicting ground vibration and AOp, a pre-developed ANN as well as two empirical equations, presented by United States Bureau of Mines (USBM), were developed. To construct the mentioned models, maximum charge per delay (MC) and distance between blast face and monitoring station (D) were set as input parameters, whereas AOp and peak particle velocity (PPV), as a vibration index, were considered as output parameters. A database consisting of 75 datasets, obtained from the Shur river dam, Iran, was utilized to develop the mentioned models. In terms of using three performance indices, namely coefficient correlation (R 2), root mean square error and variance account for, the superiority of the ANN-KNN model was proved in comparison with the ANN and USBM equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号