首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of single-component blue, green and red phosphors have been fabricated based on the Ca3Gd(GaO)3(BO3)4 host through doping of the Ce3+/Tb3+/Eu3+ ions, and their crystal structure and photoluminescence properties have been discussed in detail. A terbium bridge model via Ce3+ → Tb3+ → Eu3+ energy transfer has been studied. The emission colours of the phosphors can be tuned from blue (0.1661, 0.0686) to green (0.3263, 0.4791) and eventually to red (0.5284, 0.4040) under a single 344 nm UV excitation as the result of the Ce3+ → Tb3+ → Eu3+ energy transfer. The energy transfer mechanisms of Ce3+ → Tb3+ and Tb3+ → Eu3+ were found to be dipole-dipole interactions. Importantly, Ca3Gd(GaO)3(BO3)4:Ce3+,Tb3+,Eu3+ phosphors had high internal quantum efficiency. Moreover, the study on the temperature-dependent emission spectra revealed that the Ca3Gd(GaO)3(BO3)4:Ce3+,Tb3+,Eu3+ phosphors possessed good thermal stability. The above results indicate that the phosphors can be applied into white light-emitting diodes as single-component multi-colour phosphors.  相似文献   

2.
A series of Eu2+ and Ce3+ doped/co-doped Sr3Al2O5Cl2 afterglow phosphors that presented various bright colors were successfully synthesized via high temperature solid state reaction. The structure and luminescence properties of the obtained samples were characterized by X-ray powder diffraction (XRD), photoluminescence (PL) spectra and decay curves as well as the thermoluminescence (TL) glow curves. The XRD results showed that all the phase could be indexed to the orthorhombic structure with the space group P212121. After being exposed to a 254 nm or 365 nm mercury lamp, blue/yellow-orange afterglow emissions with broad bands peaking around 620 nm/435 nm, which were ascribed to the characteristic 4f65d–4f7/5d1–4f1 transitions of Eu2+/Ce3+, could be observed in phosphors of Sr3Al2O5Cl2:Eu2+/Sr3Al2O5Cl2:Ce3+, respectively. Because of the overlap spectral range between the Sr3Al2O5Cl2:Eu2+ and Sr3Al2O5Cl2:Ce3+ phosphors, the energy transfer (ET) from Ce3+ to Eu2+ occurred. The related ET process was discussed in detail. Moreover, the incorporation of Ce3+ could significantly prolong the afterglow duration of Sr3Al2O5Cl2:Eu2+ phosphor, which was due to the increase of trap concentration. Consequently, 6 h of the afterglow duration could be observed in Sr3Al2O5Cl2:1.0%Eu2+, 0.5%Ce3+ sample, exhibiting much longer than that of Sr3Al2O5Cl2: 1.0%Eu2+ (3 h). From the afterglow decay curves and the fitting results, the optimal concentration of Ce3+ for the enhanced afterglow property was experimentally determined to be 0.5%.  相似文献   

3.
《Ceramics International》2017,43(18):16323-16330
The tricolor-emitting MgY4Si3O13: Ce3+, Tb3+, Eu3+ phosphors for ultraviolet-LED have been prepared via a high-temperature solid-state method. X-ray diffraction, photoluminescence emission, excitation spectra and fluorescence lifetime were utilized to characterize the structure and the properties of synthesized samples. Two different lattice sites for Ce3+ are occupied from the host structure and the normalized PL and PLE spectra. The emissions of single-doped Ce3+/Tb3+/Eu3+ are located in blue, green and red region, respectively. The energy transfer from Ce3+ to Tb3+ and from Tb3+ to Eu3+ has been validated by spectra and decay curves and the energy transfer mode from Tb3+ to Eu3+ was calculated to be electric dipole-dipole interactions. By adjusting the content of Tb3+ and Eu3+ in MgY4Si3O13: Ce3+, Tb3+, Eu3+, the CIE coordinates can be changed from blue to green and eventually generate white light under UV excitation. All the results indicate that the MgY4Si3O13: Ce3+, Tb3+, Eu3+ phosphors are potential candidates in the application of UV-WLEDs.  相似文献   

4.
A modified chemical vapor deposition (CVD) technique is used to synthesize the color‐tunable siliconitride Sr2‐1.5x‐yCexEuySi5N8 (x = 0.000‐0.016 and y = 0.000‐0.020) phosphors. In comparison with the conventional solid‐state method, the CVD approach successfully improved the crystallinity, particle size distribution, and photoluminescence through the enhanced gas‐solid reaction. Under blue excitation, Sr1.98Eu0.02Si5N8 exhibited a red emission band at 618 nm. The incorporation of Ce3+ ions increased the emission intensity of Eu2+ ions by approximately 10% owing to the enhanced absorption and dipole‐dipole energy transfer process from Ce3+ to Eu2+ ions. It resulted in a shift of the emission colors from yellow to red region. The external and internal quantum efficiencies of Sr1.906Ce0.06Eu0.004Si5N8 were calculated as 54% and 70%, respectively. The activation energy of thermal stability for Sr1.906Ce0.06Eu0.004Si5N8 was evaluated as 0.31 eV. A white LED with a color rendering index of 80 and a CCT of 4964 K was successfully fabricated with the present phosphors. The current research demonstrated a new series of Sr2Si5N8:Ce3+, Eu2+ phosphors with color‐tunability for fabricating white LEDs with high color‐rendering index.  相似文献   

5.
《Ceramics International》2023,49(10):15700-15709
The solid-state reaction method was used to develop a series of Na2Ca1-x-yCexMnyP2O7 phosphors in an H2–N2 environment. The crystal structure of the pyrophosphate host, valence state of dopants (Ce, Mn), emission behavior of dopants, energy transfer mechanism, and thermal quenching behavior were thoroughly examined. Doping with Ce3+ and Mn2+ ions enhanced the photoluminescence characteristics of Na2Ca1-x-yCexMnyP2O7 while having negligible effect on the host's phase purity. Under 365 nm UV light irradiation, the addition of Ce3+ ion in the Na2CaP2O7 host revealed an asymmetric band with the typical blue emission around 415 nm and a shoulder around 455 nm. To obtain white light, Mn2+ ion was supplementarily substituted to the present system. When the Mn2+ ions concentration was elevated in the Na2CaP2O7 host, the emission intensity of 560 nm peak corresponding to Mn2+ transition enhanced significantly at the cost of Ce3+ emission of 415 nm. The systematic decrease of Ce3+ emission intensity and corresponding increase in the Mn2+ intensity with the increase in Mn2+ concentration indicated the possibility of effective energy transfer from Ce3+ to Mn2+ ions. The obtained results indicated that energy transfer from the Ce3+ to Mn2+ ions governed by dipole-quadrupole interaction. Because of the efficient energy transfer, the blue emission from Ce3+ and the orange red emission of Mn2+ provide white light from a single host along with high value of activation energy and low thermal quenching behaviour make the present phosphors to be suitable for high-power LEDs.  相似文献   

6.
A series of novel single-phase white phosphors Ba1.3Ca0.69−x−ySiO4:0.01Eu2+,xMn2+, yDy3+ were synthesized by the solid-state method. The excitation spectra of these phosphors exhibit a broad band in the range of 260–410 nm, which can meet the application requirements for near-UV LED chips (excited at 350–410 nm). The emission spectra consist of two broad bands positioned around 455 nm and 596 nm, which are assigned to 5d→4f transition of Eu2+, and 4T16A1 transition of Mn2+, respectively. The luminescence intensity of phosphors enhances obviously by doping Dy3+ ions, and the intensity of two bands reaches an optimum when Dy3+ amounts to 2 mol%. In addition, thermoluminescence investigation of phosphor was conducted, getting two shallow trap defects with activation energy of 0.43 eV and 0.45 eV, which demonstrates the energy transfer mechanism of Dy–Eu through the process of hole and electron traps. By precisely tuning the Mn2+ content, an optimized white light with color rendering index (CRI) of Ra=84.3%, correlated color temperature (CCT) of Tc=8416 K and CIE chromaticity coordinates of (0.2941, 0.2937) is generated. The phosphor could be a potential white phosphors for near-UV light emitting diodes.  相似文献   

7.
In this study, a series of red-emitting Ca3Sr3(VO4)4:Eu3+ phosphors co-doped with La3+ was prepared using the combustion method. The microstructures, morphologies, and photoluminescence properties of the phosphors were investigated. All Ca3Sr3(VO4)4:Eu3+, La3+ samples synthesized at temperatures greater than 700 ℃ exhibited the same standard rhombohedral structure of Ca3Sr3(VO4)4. Furthermore, the Ca3Sr3(VO4)4:Eu3+, La3+ phosphor was effectively excited by near-ultraviolet light of 393 nm and blue light of 464 nm. The strong excitation peak at 464 nm corresponded to the 7F05D2 electron transition of Eu3+. The strong emission peak observed at 619 nm corresponded to the 5D07F2 electron transition of Eu3+. Co-doping with La3+ significantly improved the emission intensity of Ca3Sr3(VO4)4:Eu3+ red phosphors. The optimum luminescence of the phosphor was observed at Eu3+ and La3+ concentrations of 5% and 6%, respectively. Moreover, co-doping with La3+ also improved the fluorescence lifetime and thermal stability of the Ca3Sr3(VO4)4:Eu3+ phosphor. The CIE chromaticity coordinate of Ca3Sr3(VO4)4:0.05Eu3+, 0.06La3+ was closer to the NTSC standard for red phosphors than those of other commercial phosphors; moreover, it had greater color purity than that of all the samples tested. The red emission intensity of Ca3Sr3(VO4)4:0.05Eu3+, 0.06La3+ at 619 nm was ~1.53 times that of Ca3Sr3(VO4)4:0.05Eu3+ and 2.63 times that of SrS:Eu2+. The introduction of charge compensators could further increase the emission intensity of Ca3Sr3(VO4)4:Eu3+, La3+ red phosphors. The phosphors synthesized herein are promising red-emitting phosphors for applications in white light-emitting diodes under irradiation by blue chips.  相似文献   

8.
Ce3+, Nd3+ codoped (Sr0.6Ca0.4)3(Al0.6Si0.4)O4.4F0.6 phosphors were synthesized through the high‐temperature solid‐state reaction method. Luminescence spectra, absorption spectra, and decay lifetimes of these samples have been measured to prove the energy‐transfer process from Ce3+ to Nd3+. Under UV and blue light excitation, (Sr0.6Ca0.4)3(Al0.6Si0.4)O4.4F0.6:Ce3+,Nd3+ phosphors exhibit near‐infrared (NIR) emission, mainly peaking at 1093 nm and secondarily at 916 nm. The NIR emission matches well with the band gap of c‐Si. Results of this work suggest that the (Sr0.6Ca0.4)3(Al0.6Si0.4)O4.4F0.6:Ce3+, Nd3+ phosphors have potential application as down‐shifting luminescent convertor for enhancing the photoelectric conversion efficiency of c‐Si solar cell.  相似文献   

9.
A series of Eu3+-doped C12H18Ca3O18 phosphors were synthesized through a facile hydrothermal method and the properties of as-prepared phosphors were explored by X-ray diffractometer (XRD), scanning electron microscope (SEM), and photoluminescence (PL) spectrometer. The exploration results indicated that the C12H18Ca3O18:Eu3+ had been successfully synthesized. The morphology of C12H18Ca3O18:Eu3+ was a strip with the size of 100–4000 nm × 50–400 nm × 50–200 nm and the ratio of length to width of 2–80. The strongest emission peak of C12H18Ca3O18:Eu3+ around 620 nm was ascribed to 5Do7F2 transition of Eu3+, and the peaks centered at 590, 653 and 694 nm respectively corresponded to 5Do7F1, 7F3, and 7F4 transitions. C12H18Ca3O18: Eu3+ gave the red light emission, as indicated by color coordinate analysis. The photoluminescence intensity of the phosphors prepared under the Eu3+ concentration of 6% was the highest. The crystal structure of C12H18Ca3O18:Eu3+ was changed after europium ions occupied the lattice position of calcium ions. Europium ion could displace calcium arbitrarily. As a new kind of matrix, calcium citrate possesses the properties of both organic and inorganic compounds and the luminescent C12H18Ca3O18: x Eu3+ particles may be applied in biological fluorescent tags and luminescent materials.  相似文献   

10.
Single-composition Ba2Y2Si4O13:Bi3+,Eu3+ (BYSO:Bi3+,Eu3+) phosphors with color-tunable and white emission were prepared by conventional high temperature solid-state reaction method. The structural and luminescent properties of these phosphors were thoroughly investigated through X-ray diffraction, photoluminescence, and decay curves. BYSO:Bi3+ phosphors show two excitation peaks at 342 and 373 nm, and give two emission peaks at 414 and 503 nm, respectively, indicating that there are two sites of Bi3+ in BYSO. The energy transfer from Bi3+ to Eu3+ was investigated in detail. Varied hues from blue (chromaticity coordinate [0.219, 0.350]) to white (0.288, 0.350) and orange-red light (0.644, 0.341) can be generated by adjusting the content of Eu3+. Pure white light emission (0.311, 0.338) can be obtained under the excitation of 355 nm in BYSO:3%Bi3+,20%Eu3+ phosphor. Besides, BYSO:Bi3+,Eu3+ phosphors exhibit distinct thermal quenching properties, whose emission intensity at 473 K is 82.6% of that at 298 K. Our results indicate that BYSO:Bi3+,Eu3+ may be applied as conversion phosphors for n-UV-based W-LEDs.  相似文献   

11.
《Ceramics International》2020,46(4):4511-4518
Rare earth activated lithium-containing alkaline earth silicates is an intensely studied topic in the fields of luminescent materials. In this study, a cerium-activated lithium-silicate blue phosphor, Li2Ca2Si2O7:Ce3+, was explored using structural computational simulations and systematic experiments. The Li2Ca2Si2O7:Ce3+ phosphor can be efficiently excited by near-ultraviolet and cathode ray light sources. According to the spectroscopic redshift theory, time-resolved photoluminescence (TRPL) and cathodoluminescence (CL) spectra, it is determined that the broad emission of Li2Ca2Si2O7:Ce3+ comes from two different luminescent centers. In addition, Li2Ca2Si2O7:Ce3+ exhibits strong blue emission at ~415 nm with high quantum yield and stable emission under high temperature and continuous electron beam bombardment. Therefore, this study provides a new insight into developing new high-efficiency and high-purity trichromatic phosphors.  相似文献   

12.
High-efficient Ce3+/Tb3+ co-doped Ba3Y2B6O15 phosphors with multi color-emitting were firstly prepared, and their structural and luminescent properties were studied by XRD Rietveld refinement, emission/excitation spectra, fluorescence lifetimes as well as temperature-variable emission spectra. Upon 365?nm excitation, the characteristic blue Ce3+ band along with green Tb3+ peaks were simultaneously found in the emission spectra. Moreover, by increasing concentration of Tb3+, a blue-to-green tunable emitting color could be realized by effective Ce3+→Tb3+ energy transfer. Furthermore, all Ba3Y2B6O15: Ce3+, Tb3+ phosphors exhibit high internal quantum efficiency of ~?90%, while the temperature-variable emission spectra reveal that the phosphors possess impressive color stability as well as good thermal stability (T50 =?~?120?°C). The results indicate that these efficient color-tuning Ba3Y2B6O15: Ce3+, Tb3+ might be candidate as converted phosphor for UV-excited light-emitting diodes.  相似文献   

13.
A novel and facile synthetic approach has been trialed, and attempted with success in the preparation of two phosphors namely, a red emitting CaSrSiO4:Eu3+ and a green emitting CaSrSiO4:Eu2+. These phosphors were successfully synthesized using a simple co-precipitating solvo-thermal strategy wherein tetraethyl orthosilicate (TEOS) as silica source and the acetate precursors of strontium (Sr2+), calcium (Ca2+) and europium (Eu3+) are utilized. The material so obtained is subjected to an extensive photoluminescence behavior study. The concentration of the dopant (Eu3+and Eu2+) plays a significant role in the determination of photoluminescence behavior and hence a systematic and in-depth experimental studies were done and the results are synchronized. On interpretation of the output, it came to light that an intense emission signals sparked in the red region (590 and 615 nm) in the case of phosphor doped with Eu3+, which is excited under near ultra violet (395 nm) and blue (466 nm) region. In case of the CaSrSiO4 sample doped with Eu2+, an intense broad green signal (~510 nm) is obtained under the excitation range of 350–430 nm. The results obtained are quite encouraging and made a strong confirmation as, the solvo-thermally synthesized CaSrSiO4, which is activated by the dopants namely Eu3+ and Eu2+ possesses an immense potential and it is exactly tapped by the adopted methodology. Despite its strong impact, it will also assure a strong revolution in the fabrication and thus the commercialization of white LEDs as both the red and green emitting phosphor.  相似文献   

14.
Ce3+‐activated light emitting diode (LED) phosphors have been extensively examined for photoluminescence, and have been the focus of many detailed structural studies. However, reports of the decay curves of Ce3+‐activated LED phosphors are rare. Although we have reported the decay behaviors of several Eu2+‐activated LED phosphors such as Sr2SiO4, Sr2Si5N8, and CaAlSiN3, we have never conducted an in‐depth study into the decay behavior for Ce3+‐activated LED phosphors. For this study, we investigated the decay curves of well‐known Ce3+‐activated LED phosphors such as La3Si6N11 and Lu3Al5O12. Similar to Eu2+‐activated LED phosphors, the decay behavior of Ce3+‐activated LED phosphors was sensitive to the Ce3+ concentration and to the detection wavelength. There was active nonradiative energy transfer between the Ce3+ activators located at different sites.  相似文献   

15.
Ca2Gd8(SiO4)6O2 (CGS) nanophosphors with different concentrations of single-doped Dy3+ ions and co-doped Dy3+/Eu3+ ions were prepared by a solvothermal synthesis. Very fine particles in the nanometer range could be achieved by this method, as evidenced by transmission electron microscope measurements. The hexagonal phase of the oxyapatite structure was confirmed by X-ray diffraction patterns. The energy transfer between Eu3+ and Dy3+ ions was investigated by photoluminescence excitation and emission properties. These phosphors had absorption bands in the UV and NUV region, which are suitable for the emission wavelength of UV or NUV light-emitting diodes (LEDs). With increasing the Eu3+ ion concentration, the emission peak intensity corresponding to the 5D07F2 transition increased and the yellow (4F9/26H13/2) emission intensity also increased compared to the blue (4F9/26H15/2) emission intensity due to the increased energy transfer between Dy3+ to Eu3+ ions. Thus, the Eu3+ ions compensated the red emission component of the Dy3+ doped CGS nanophosphors. Such phosphors are expected to have potential applications for NUV based white LEDs.  相似文献   

16.
A new vanadate Ca3LiMgV3O12 and its Eu3+-doped counterparts were synthesized. Rietveld confinement result of Ca3LiMgV3O12 host indicates that it belongs to cubic space group Ia-3d with parameters of a =?12.4300?Å, V =?1920.49?Å3, Z?=?8. Under UV excitation, pure Ca3LiMgV3O12 exhibits a bluish-green broadband emission at 490?nm, while Eu3+ doped Ca3LiMgV3O12 shows one bluish-green broad band with a series of red sharp peaks, which originate from the V5+-O2- charge transfer and the Eu3+ intra-4f transitions, respectively. The occurrence of VO4→Eu3+ energy transfer is confirmed by decay lifetime analysis and time-resolved emission spectra. It is found that emitting color varies from bluish-green to orange-red with increasing Eu3+ concentration. VO4 bluish-green and Eu3+ red emission shows different thermal quenching response with increasing temperature, due to their different activation energy.  相似文献   

17.
A series of color tunable Tb3+‐ and Eu3+‐activated Sr2P2O7 phosphors were synthesized by a traditional solid‐state reaction method in air atmosphere. The crystal structure, photoluminescence (PL) properties, energy transfer, thermal stability, and luminous efficiency were investigated. A series of characteristic emission of Tb3+ and Eu3+ were observed in the PL spectra and the variation in the emission intensities of the three emission peaks at around 416 nm (blue), 545 nm (green), and 593 nm (orange‐red) induced the multicolor emission evolution by tuning the Tb3+/Eu3+ content ratio. The energy‐transfer mechanism from Tb3+ to Eu3+ ion was determined to be dipole–dipole interaction, and the energy‐transfer efficiency was about 90%. The novel phosphors have excellent thermal stability in the temperature range of 77–473 K and the Commission International De L'Eclairage 1931 chromaticity coordinates of Sr2P2O7: Tb3+, Eu3+ex = 378 nm) move toward the ideal white light coordinates.  相似文献   

18.
A series of Ca4–yY6–xO(SiO4)6: xCe3+, yEu2+ samples are synthesized by a high‐temperature solid‐state method. Under 356 nm excitation, Ca4Y6O(SiO4)6:Ce3+ presents a strong blue emission band at 426 nm which are assigned to 4f05d1→4f1 transition of Ce3+ ion. Ca4Y6O(SiO4)6:Eu2+ shows green emission under 380 nm radiation excitation, and the peak locates at 527 nm which is mainly due to transitions of Eu2+ from 4f7 ground state to 4f65d1 excited state. Under 356 nm excitation, a remarkable energy transfer from Ce3+ to Eu2+ exists in Ca4Y6O(SiO4)6, and the result reveals that the mechanism of energy transfer is a resonant type via a nonradiative dipole–dipole interaction. The hues of Ca4Y6O(SiO4)6:Ce3+, Eu2+ can be adjusted by the energy transfer from Ce3+ to Eu2+ ions, and a white emission can be achieved by tuning the ratio of Ce3+ to Eu2+. The results mean that Ce3+ may be the effective sensitizer for Eu2+‐doped Ca4Y6O(SiO4)6.  相似文献   

19.
The photoluminescent properties of un-doped and Sm3+ doped Ca3Y2Si3O12 phosphors were prepared by the citrate sol-gel method. Un-doped sample has shown a strong blue emission, which has its maximum intensity at 389 nm. Among all the observed emission transitions 4G5/26HJ (J = 5/2, 7/2 & 9/2) of Sm3+, the reddish-orange (RO) emission transition 4G5/26H7/2 is more prominent, which matches well with the emission wavelength of near UV (n-UV) LED. The reasons for the observance of such prominent visible color emissions from these phosphors have been substantiated appropriately. Besides, structural details of these samples have also been analyzed from the measured XRD, TEM, TG-DTA and FT-IR profiles.  相似文献   

20.
Europium doped calcium orthosilicate (Ca2SiO4) phosphors have been synthesized by the conventional high temperature solid-state reaction method in various concentrations from agricultural waste (egg shell as a CaO and rice husk as a SiO2). These phosphors structure from X-ray diffraction and morphology from scanning electron microscopy have been examined. Concentration dependent Eu3+ ions luminescent properties in Ca2SiO4 phosphors have been studied from the excitation, emission and decay curves analysis. The 5D07FJ transitions observed in luminescence spectrum allows to determine the site symmetry of the Eu3+ ion. A charge transfer band (CTB) at around 260?nm which is due to the Eu–O interaction in the host along with the 4f – 4f excitation bands due to Eu3+ ions in UV and blue regions are observed. The color co-ordinates determined from emission spectra varies with concentrations of Eu3+ ions and are found to fall in the red region. The decay curves show single exponential behavior for all concentrations of Eu3+ ions (0.01–0.4?mol%) and the lifetimes varied from 2.67 to 2.78?ms. It is worth noting that the present material is found to be far better than many red phosphors synthesized by using agricultural waste as raw materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号