首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
TiO2 porous ceramic/Ag–AgCl composite was prepared by incorporating AgCl nanoparticles within the bulk of TiO2 porous ceramic followed by reducing Ag+ in the AgCl particles to Ag0 species under visible light irradiation. The porous TiO2 ceramic was physically robust and chemically durable, and the porous structure facilitated the implantation of AgCl NPs. Compared with the bare TiO2 ceramic, TiO2 porous ceramic/Ag–AgCl composite exhibited higher photocatalytic performance for the degradation of MO and RhB under visible light irradiation. The reaction rate constants k of MO and RhB degradation over TiO2 porous ceramic/Ag–AgCl composite was respectively 6.25 times and 3.62 times higher than those recorded over the bare TiO2 porous ceramic. The photocatalytic activity showed virtually no decline after four times cyclic experiments under visible light irradiation. Scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, UV–Vis diffuse reflectance spectroscopy, photoluminescence spectra and X-ray photoelectron spectroscopy were used to characterize the TiO2 porous ceramic/Ag–AgCl composite.  相似文献   

2.
A novel nanoscale GR–Nd/TiO2 composite photocatalyst was synthesized by the hydrothermal method. Its crystal structure, surface morphology, chemical composition and optical properties were studied using XRD, TEM, and XPS, DRS and PL spectroscopy. It was found that graphene and neodymium modification shifts the absorption edge of TiO2 to visible-light region. The results of photoluminescence (PL) emission spectra show that GR–Nd/TiO2 composites possess better charge separation capability than do Nd/TiO2 and pure TiO2. The photocatalytic activity of prepared samples was investigated by degradation of methyl orange (MO) dye under visible light irradiation. The results show that the GR–Nd/TiO2 composite can effectively photodegrade MO, showing an impressive photocatalytic activity enhancement over that of pure TiO2. The enhanced photocatalytic activity of the composite catalyst might be attributed to the large adsorptivity of dyes, extended light absorption range and efficient charge separation due to Nd doping and graphene incorporation.  相似文献   

3.
A series of TiO2/SiO2 composite with different Ti/Si ratios were prepared by sol–gel technique. The samples were characterized by different analytical techniques such as XRD, FT-IR, BET and XPS. Grain size of anatase TiO2 calculated using Scherrer's formula was found to be in the range of 2.1–8.7 nm, and the content of anatase phase in TiO2 ranges from 45% to 40.1%. The photocatalytic properties on methyl orange (MO) solution were also studied. The degradation rate of the composite is much higher than that of the pure TiO2 in the same conditions.  相似文献   

4.
《Ceramics International》2015,41(4):5999-6004
BiVO4/TiO2 nanocomposites were successfully synthesized by coupling the modified sol-gel method with hydrothermal method. The samples were physically characterized X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer, Emmett and Teller (BET)-specific surface area, UV–vis diffuse reflectance spectrophotometry, zeta potential, and photoluminescence techniques. The BiVO4/TiO2 nanocomposites exhibited good photocatalytic activity in degradation of methylene blue under simulated solar light irradiation. The photodegradation of methylene blue demonstrated that 0.5BiVO4/0.5TiO2 photocatalyst exhibited much enhanced photoactivity than pure BiVO4 and TiO2. Based on the obtained results, the as-prepare BiVO4/ TiO2 nanocomposite possessed great adsorptivity of methylene blue, extended light adsorption range, and efficient charge separation properties. Overall, this work could provide new insights into the fabrication of a BiVO4/TiO2 composite as high performance photocatalyst and promise as a solar light photocatalyst for dye wastewater treatment.  相似文献   

5.
In this work, a series of titania-supported NiO and CdO materials were synthesized by a modified sol-gel process. The prepared photocatalysts were characterized by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), and transmission electron microscopy (TEM). The activities of titania-supported NiO and CdO photocatalysts for photocatalytic degradation of Remazole Red F3B (RR) dye, under simulated sunlight, were investigated. The photocatalytic mineralization of an RR dye solution over various NiO-x/TiO2 and CdO-x/TiO2 photocatalysts under simulated sunlight was investigated. It was worthy noticing that the photocatalytic activity of titania improved using the prepared catalysts. The prepared TiO2, NiO-5/TiO2, and CdO-2/TiO2 photocatalysts exhibited higher photocatalytic activity under simulated sunlight than did commercial TiO2. The prepared photocatalysts were stable after photocatalytic degradation of the dye. The observed photocatalytic mineralization of the dye was 51 and 71% over NiO-10/TiO2 and CdO-2/TiO2 after 180 min of irradiation, respectively. Juxtaposing a p-NiO-5/TiO2 semiconductor provided a potential approach for decreasing charge recombination. The prepared photocatalystsNiO-5/TiO2 and CdO-2/TiO2 are promising composites for the solar detoxification of textile wastewater.  相似文献   

6.
TiO2 nanoparticles modified with 5-(p-hydroxylphenyl)-10,15,20-triphenylporphyrin (HTPP), 5-(p-hydroxylphenyl)-10,15,20-triphenylporphyrin zinc (ZnHTPP) and trans-dichloro-5-(p-hydroxylphenyl)-10,15,20-triphenylporphyrin tin (SnHTPP) were prepared in order to improve the visible photocatalytic activity of TiO2 nanoparticles. The photocatalytic activity of the modified TiO2 nanoparticles was investigated by carrying out the photodegradation of methyl orange in aqueous solution under visible light irradiation. The TiO2 nanoparticles modified with SnHTPP show the highest visible photocatalytic activity with a degradation ratio of 86% of methyl orange after 180 min irradiation among three catalysts. This result indicates that the central metal ions in porphyrins can significantly influence the sensitization efficiency of porphyrins. In addition, the photoelectrochemical behavior of the modified TiO2 nanoparticles was examined and related to their photocatalytic activity. Finally, the photocatalytic mechanism was discussed preliminarily.  相似文献   

7.
A simple and straightforward approach to prepare TiO2-coated carbon nanotubes (CNTs) is presented. Anatase TiO2 nanoparticles (NPs) with the average size ~8 nm were coated on CNTs from peroxo titanic acid (PTA) precursor even at low temperature of 100 °C. We demonstrate the effects of CNTs/TiO2 molar ratio on the adsorption capability and photocatalytic efficiency under UV–visible irradiation. The samples showed not only good optical absorption in visible range, but also great adsorption capacity for methyl orange (MO) dye molecules. These properties facilitated the great enhancement of photocatalytic activity of TiO2 NPs-coated CNTs photocatalysts. The TiO2 NPs-coated CNTs exhibited 2.45 times higher photocatalytic activity for MO degradation than that of pure TiO2.  相似文献   

8.
BACKGROUND: Semiconductor TiO2 has been investigated extensively due to its chemical stability, nontoxicity and inexpensiveness. However, the wide band gap of anatase TiO2 (about 3.2 eV) only allows it to absorb UV light. TiO2 nanoparticles modified by conditional conjugated polymers show excellent photocatalytic activity under visible light. However, these conjugated polymers are not only expensive, but also difficult to process. Polyvinyl chloride (PVC) was heat‐treated at high temperature to remove HCl and a C?C conjugated chain structure was obtained. When TiO2 nanoparticles were dispersed into the conjugated polymer film derived from PVC, this composites film exhibited high visible light photocatalytic activity. RESULTS: The photocatalytic activity of TiO2/heat‐treated PVC (HTPVC) film was investigated by degrading Rhodamine B (RhB) under visible light irradiation. The photodegradation of RhB follows apparent first‐order kinetics. The rate constants of RhB photodegradation in the presence of the TiO2/HTPVC films with different mass content of TiO2 are 16–56 and 4–14 times that obtained in the presence of the pure HTPVC and TiO2/polymethyl methacrylate (PMMA) composite film, respectively. The TiO2/HTPVC film showed excellent photocatalytic activity and stability after 10 cycles under visible light irradiation. CONCLUSION: TiO2/HTPVC film exhibits high visible light photocatalytic activity and stability. Copyright © 2012 Society of Chemical Industry  相似文献   

9.
The composite powder of TiO2/ZnO with an atomic ratio of Ti to Zn of 3/1 was prepared through sol–gel process followed by hydrothermal and post-heat treatments. The as-prepared powder was characterized in detail by means of XRD, TG/DTA, DLS, and SEM. The XRD results showed that by applying the hydrothermal process the crystallinity of the composite powder was significantly improved. The SEM and DLS results revealed no visible variations on particle morphology and size owing to the hydrothermal and post-heat treatments. The enhancement of the photocatalytic activity of the composite powder evaluated through methyl orange (MO) degradation under UV light irradiation was, therefore, attributed to its high crystallinity that was achieved during the hydrothermal process under a rather low temperature.  相似文献   

10.
Graphene/carbon composite nanofibers (CCNFs) with attached TiO2 nanoparticles (TiO2–CCNF) were prepared, and their photocatalytic degradation ability under visible light irradiation was assessed. They were characterized using scanning and transmission electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and ultraviolet–visible diffuse spectroscopy. The results suggest that the presence of graphene embedded in the composite fibers prevents TiO2 particle agglomeration and aids the uniform dispersion of TiO2 on the fibers. In the photodegradation of methylene blue, a significant increase in the reaction rate was observed with TiO2–CCNF materials under visible light. This increase is due to the high migration efficiency of photoinduced electrons and the inhibition of charge–carrier recombination due to the electronic interaction between TiO2 and graphene. The TiO2–CCNF materials could be used for multiple degradation cycles without a decrease in photocatalytic activity.  相似文献   

11.
Ag–TiO2 nanocatalyst, supported on multi-walled carbon nanotubes, was synthesized successfully via a modified sol–gel method, and the prepared photocatalyst was used to remediate aqueous thiophene environmentally by photocatalytic oxidation under visible light. The prepared Ag–TiO2/multi-walled carbon nanotubes nanocomposite photocatalyst was characterized through X-ray diffraction, Brunauer–Emmett–Teller (BET), transmission electron microscopy, and UV–vis spectra (UV–vis). The results showed that both Ag and TiO2 nanoparticles were well-dispersed over the MWCNTs and formed a uniform nanocomposite. Ag doping can eliminate the recombination of electron–hole pairs in the catalyst, and the presence of MWCNTs in the TiO2 composite can change surface properties to achieve sensitivity to visible light. The optimum mass ratio of MWCNT:TiO2:Ag was 0.02:1.0:0.05, which resulted in the photocatalyst's experimental performance in oxidizing about 100% of the thiophene in a 600 mg/L solution within 30 min and with 1.4 g L−1 amount of catalyst used.  相似文献   

12.
A pulse current deposition technique was adopted to construct highly dispersed Ag nanoparticles on TiO2 nanotube arrays which were prepared by the electrochemical anodization. The morphology, crystallinity, elemental composition, and UV-vis absorption of Ag/TiO2 nanotube arrays were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and diffuse reflectance spectra (DRS). In particular, the photoelectrochemical properties and photoelectrocatalytic activity under UV light irradiation and the photocatalytic activity under visible light irradiation for newly synthesized Ag/TiO2 nanotube arrays were investigated. The maximum incident photon to charge carrier efficiency (IPCE) value of Ag/TiO2 nanotube arrays was 51%, much higher than that of pure TiO2 nanotube arrays. Ag/TiO2 nanotube arrays exhibited higher photocatalytic activities than the pure TiO2 nanotube arrays under both UV and visible light irradiation. The photoelectrocatalytic activity of Ag/TiO2 nanotube arrays under UV light irradiation was 1.6-fold enhancement compared with pure TiO2 nanotube arrays. This approach can be used in synthesizing various metal-loaded nanotube arrays materials.  相似文献   

13.
Highly ordered TiO2 nanotube arrays (TiO2-NTAs), with a uniform tube size on titanium substrate, were obtained by means of reoxidation and annealing. A composite structure, CdSe quantum dots@TiO2 nanotube arrays (CdSe QDs@TiO2-NTAs), was fabricated by assembling CdSe quantum dots into TiO2-NTAs via cyclic voltammetry electrochemical deposition. The X-ray diffractometer (XRD), field-emission scanning electron microscope (SEM), and transmission electron microscope (TEM) were carried out for the determination of the composition and structure of the tubular layers. Optical properties were investigated by ultraviolet-visible spectrophotometer (UV-Vis). Photocurrent response under visible light illumination and photocatalytic activity of samples by degradation of methyl orange were measured. The results demonstrated that the photo absorption of the composite film shifted to the visible region, and the photocurrent intensity was greatly enhanced due to the assembly of CdSe QDs. Especially, photocurrent achieved a maximum of 1.853 μA/cm2 after five voltammetry cycles of all samples. After irradiation under ultra violet-visible light for 2 h, the degradation rate of composition to methyl orange (MO) reached 88.20%, demonstrating that the CdSe QDs@TiO2-NTAs exhibited higher photocatalytic activity.  相似文献   

14.
BACKGROUND; In this study, simultaneous photocatalytic degradation of four fluoroquinolone (FQ) compounds (i.e. ofloxacin, norfloxacin, ciprofloxacin and enrofloxacin) was investigated in TiO2 suspensions under simulated solar light irradiation. Effects of experimental variables including pH, TiO2 dosage, initial substrate concentration and hydrogen peroxide (H2O2) on the degradation processes were also investigated. RESULTS: The antibiotics degradation was pH‐influenced. The photocatalytic reaction followed the pseudo‐first‐order model, with reaction rate constants (k) 0.026, 0.027, 0.022 and 0.026 min?1 for ofloxacin, norfloxacin, ciprofloxacin and enrofloxacin, respectively. Complete elimination of four FQs was achieved in a reaction system composed of 0.5 g L?1 of TiO2 and 82.5 mg L?1 of H2O2 at pH 6 after 90 min irradiation. Mineralization of FQs during TiO2 photocatalysis was slower than the FQs conversion, and the antibacterial activity of the four FQs was completely removed by TiO2 under simulated solar light irradiation. CONCLUSION: The four FQs can be simultaneously degraded and mineralized with commercially available TiO2 under simulated solar light irradiation. Microbiological analysis showed that the antibacterial activity of the four FQs was completely removed. These results are helpful for antibiotics removal in the environment, and for exploring new technology for wastewater treatment. Copyright © 2012 Society of Chemical Industry  相似文献   

15.
The photocatalytic degradation of polyethylene (PE) plastic was carried out directly under the sunlight irradiation with polypyrrole/TiO2 (PPy/TiO2) nanocomposite as photocatalyst, which prepared by sol-gel and emulsion polymerization methods. The photocatalytic degradation efficiency was determined by weight loss monitoring, gel permeation chromatography (GPC), atomic force microscopic (AFM) and FT-IR analysis. The photocatalytic degradations of PE plastic with pure TiO2 and PPy were also investigated and compared with that of PPy/TiO2. It was noticed that irradiating the PE plastic for 240 h by sunlight reduced its weight up to 35.4% and 54.4% of M w, respectively. The AFM images showed the formation of cavities on PE plastic surface. FT–IR spectroscopic studies indicated that a strong interaction existed between the interface of PE and PPy/TiO2 and caused the degradation of PE. The photocatalytic degradation mechanism was also discussed briefly.  相似文献   

16.
17.
18.
《Ceramics International》2019,45(13):15942-15953
The development of highly efficient and multifunctional composite photocatalysts for both energy conversion and environmental governance has obtained great concerns. Here, a novel CdIn2S4/TiO2 (CIS/THS) hollow composite photocatalyst was firstly designed and synthesized via a facile in-situ growth process, where the CdIn2S4 nano-octahedra densely attached on the surface of TiO2 hollow spheres to form the unique hybrid heterostructure. The as-synthesized CIS/THS heterojunctions exhibit much superior photocatalytic activities for hydrogen evolution and Methyl Orange (MO) decomposition in comparison to pure CdIn2S4 and TiO2 hollow spheres. The experimental results display that the CIS/THS-3 sample with the 30 wt% of TiO2 presents the optimal photocatalytic H2 production efficiency and its generation rate is 3.38 and 2.56 times as high as those of pure TiO2 and CdIn2S4. Besides, the as-synthesized CIS/THS-3 hybrid also possesses the best MO photodegradation performance and its rate constant is 11.43 and 8.34 times higher than those of pure TiO2 and CdIn2S4. The enhanced photocatalytic activities can be assigned to the synergistic effect, optimized light-harvesting capacity and the formation of hybrid heterostructure for boosting interfacial charge transfer and separation. Furthermore, based on the trapping experiments and ESR analysis, the possible type-Ⅱ interface charge transport mechanism was also proposed. Our study may provide the direct guidance for constructing other hollow TiO2-based composite photocatalysts with superior photocatalytic water splitting and degradation performances.  相似文献   

19.
Nanosized TiO2 sol synthesized by sol-gel method was successfully coated on the porous red clay tile (PRC tile) with micrometer sized pores. PRC tile was first coated with a low-firing glaze (glaze-coated PRC tile) and then TiO2 sol was coated on the glaze layer. A low-fired glaze was prepared at various blending ratios with frit and feldspar, and a blending ratio glazed at 700 °C was selected as an optimum condition. Then TiO2 sol synthesized from TTIP was dip-coated on the glazed layer (TiO2/glaze-coated PRC tile), and it was calcined again at 500 °C. Here, these optimum calcination temperatures were selected to derive a strong bonding by a partial sintering between TiO2 sol particles and glaze layer. Photocatalytic activity on the TiO2/glaze-coated PRC tile was evaluated by the extent of photocatalytic degradation of methylene blue and acetaldehyde. Methylene blue with the high concentration of 150 mg/l on the surface of TiO2/glaze-coated PRC tile was almost photodegraded within 5 hours under the condition of average UV intensity of 0.275 mW/cm2, while no photodegradation reaction of methylene blue occurred on the glaze-coated PRC tile without TiO2. Another photocatalytic activity was also evaluated by measuring the extent of photocatalytic degradation of gaseous acetaldehyde. The photodegradation efficiency in TiO2/glaze-coated PRC tile showed about 77% photocatalytic degradation of acetaldehyde from 45,480 mg/l to 10,536 mg/l after the UV irradiation of 14 hours, but only about 16% in the case of the glaze-coated PRC tile.  相似文献   

20.
水热法制备TiO2片晶及光催化性能   总被引:1,自引:1,他引:0       下载免费PDF全文
以稳定的金红石相TiO2为原料,水热法制备出微米级TiO2片晶。采用扫描电镜(SEM)、X射线粉末衍射(XRD)、N2吸附-脱附等分析手段对样品进行了分析。将不同温度下煅烧后样品进行甲基橙降解实验。实验结果表明,反应48 h可获得长60~80μm、宽30~60μm、厚4~9 μm的介孔片晶。经450℃煅烧可得到锐钛矿相占83.6%的混晶,比表面和孔径分别为68 m2·g-1、21.6 nm,对甲基橙降解率最高,在30 min内降解了92.4%,60 min几乎全部降解,其催化活性优于商用P25,且微米级的颗粒更容易回收再利用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号