首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Stoichiometric phosphors LiGd1−xEux(PO3)4(x=0, 0.2, 0.4, 0.6, 0.8, 1.0) were synthesized via traditional solid state reactions. The X-ray powder diffraction measurements show that all prepared samples are isostructural with LiNd(PO3)4. Eu3+ doped phosphors can emit intense reddish orange light under the excitation of near ultraviolet light from 370 to 410 nm. The strongest two at 591 and 613 nm can be attributed to the transitions from excited state 5D0 to ground states 7F1 and 7F2, respectively. The typical chromaticity coordinates (x=0.620, y=0.368) of Eu3+ doped phosphors are in red area. The recorded absorbance spectra indicate that there is effective absorbance in the near UV region for all Eu3+ doped samples. Present research indicates that LiGd1–xEux(PO3)4 is a promising phosphor for white light-emitting diodes.  相似文献   

2.
A series of Ba2Mg1−xMnxP4O13 (x = 0-1.0) and Ba1.94Eu0.06Mg1−xMnxP4O13 (x = 0-0.15) phosphors were prepared by conventional solid-state reaction. X-ray powder diffraction (XRD), the photoluminescence spectra, and the decay curves are investigated. XRD analysis shows that the maximum tolerable substitution of Mn2+ for Mg is about 50 mol% in Ba2MgP4O13. Mn2+-singly doped Ba2MgP4O13 shows weak red-luminescence peaked at about 615 nm. The Eu2+/Mn2+ co-doped phosphor emits two distinctive luminescence bands: a blue one centered at 430 nm originating from Eu2+ and a broad red-emitting one peaked at 615 nm from Mn2+ ions. The luminescence of Mn2+ ions can be greatly enhanced with the co-doping of Eu2+ in Ba2MgP4O13. The efficient energy transfer from Eu2+ to Mn2+ is verified by the excitation and emission spectra together with the luminescence decay curves. The emission colors could be tuned from the blue to the red-purple and eventually to the deep red. The resonance-type energy transfer via a dipole-quadrupole interaction mechanism is supported by the decay lifetime data. The energy transfer efficiency and the critical distance are calculated and discussed. The temperature dependent luminescence spectra of the Eu2+/Mn2+ co-doped phosphor show a good thermal stability on quenching effect.  相似文献   

3.
The Ca3−xB2O6:xDy3+ (0.0 ≤ x ≤ 0.105) and Ca2.95−yDy0.05B2O6:yLi+ (0 ≤ y ≤ 0.34) phosphors were synthesized at 1100 °C in air by solid-state reaction route. The as-synthesized phosphors were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM), photoluminescence excitation (PLE) and photoluminescence (PL) spectra. The PLE spectra show the excitation peaks from 300 to 400 nm is due to the 4f-4f transitions of Dy3+. This mercury-free excitation is useful for solid state lighting and light-emitting diodes (LEDs). The emission of Dy3+ ions upon 350 nm excitation is observed at 480 nm (blue) due to the 4F9/2 → 6H15/2 transitions, 575 nm (yellow) due to 4F9/2 → 6H13/2 transitions and a weak 660 nm (red) due to 4F9/2 → 6H11/2 emissions, respectively. The optimal PL intensity of the Ca3−xB2O6:xDy3+ phosphors is found to be x = 0.05. Moreover, the PL results from Ca2.95−yDy0.05B2O6:yLi+ phosphors show that Dy3+ emissions can be enhanced with the increasing codopant Li+ content till y = 0.22. By simulation of white light, the CIE of the investigated phosphors can be tuned by varying the content of Li+ ions, and the optimal CIE value (0.300, 0.298) is realized when the content of Li+ ions is y = 0.22. All the results imply that the Ca2.95−yDy0.05B2O6:yLi+ phosphors could be potentially used as white LEDs.  相似文献   

4.
Eu3+-activated MgAl(PO4)O:phosphor has been synthesized by a high temperature solid state reaction and efficient red emission under near-ultraviolet excitation is observed. The emission spectrum shows a dominant peak at 594 nm due to the 5D07F1 transition of Eu3+. The excitation spectrum is coupled well with the emission of UV LED (350–410 nm). The effect of Eu3+ concentration on the luminescent properties of MgAl(PO4)O:Eu3+ and the mechanism of concentration quenching of Eu3+ are studied. The results show that MgAl(PO4)O:Eu3+ is a promising red-emitting phosphor for white LEDs.  相似文献   

5.
Eu2+-doped BaAl2O4 green phosphors were prepared by a conventional solid-state reaction and the effects of Dy3+ co-doping on the photoluminescence property were investigated. The phosphors were characterized by X-ray powder diffraction (XRD), fluorescence spectroscopy, field-emission scanning electron microscopy (FESEM) and X-ray photoelectron spectroscopy (XPS). XRD showed that all prepared samples exhibited a hexagonal BaAl2O4 phase. Fluorescence spectroscopy showed that the photoluminescence efficiency increased with increasing Eu2+ concentration until 3 mol% then decreased at higher concentrations due to concentration quenching effect. Moreover, Dy3+ co-doping increased the photoluminescence efficiency of the Eu2+-doped BaAl2O4 phosphor.  相似文献   

6.
The development and photoluminescence analysis of Eu3+or Dy3+ ions in the matrix of lithium titanate (Li2TiO3) ceramics by using a solid state reaction method are reported. Emission spectra of Eu3+:Li2TiO3 ceramics have shown strong red emission at 611 nm (5D0 → 7F2) with λexci = 392 nm (7F0 → 5L6) and from the Dy3+:Li2TiO3, a blue emission at 493 nm (4F9/2 → 6H15/2) and also an yellow emission at 582 nm (4F9/2 → 6H13/2) have been observed with λexci = 366 nm (6H15/2 → 6P5/2). Both the rare-earth ions containing ceramics have displayed their brighter emission performance from their measured spectral results. In addition, X-ray diffraction (XRD), Fourier transform infra red (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) have been used to characterize the structural properties of (Eu3+ or Dy3+):Li2TiO3 ceramics.  相似文献   

7.
A series of Ce3+ ions doped GdSr2AlO5 (GSA) phosphors were synthesized by a citric acid based sol–gel method. The X-ray diffraction patterns confirmed their tetragonal structure after the samples were annealed at 1300 °C, and the scanning electron microscope image showed the closely packed particles. The excitation spectra revealed that the GSA phosphor effectively excited with blue light of 442 nm due to the 4f1→5d1 transition and exhibited yellow emission corresponding to the 5d1→4f1 transition of Ce3+ ions. The optimum doping concentration of Ce3+ ions was 5 mol% and the critical distance was calculated to be ~17 Å. White LEDs were fabricated by combining blue LED (465 nm) chip with Ce3+:GSA phosphor. The CIE chromaticity coordinates (0.34, 0.31) provide their emission potentiality in the white light region.  相似文献   

8.
A series of Eu2+ and Ce3+ doped/co-doped Sr3Al2O5Cl2 afterglow phosphors that presented various bright colors were successfully synthesized via high temperature solid state reaction. The structure and luminescence properties of the obtained samples were characterized by X-ray powder diffraction (XRD), photoluminescence (PL) spectra and decay curves as well as the thermoluminescence (TL) glow curves. The XRD results showed that all the phase could be indexed to the orthorhombic structure with the space group P212121. After being exposed to a 254 nm or 365 nm mercury lamp, blue/yellow-orange afterglow emissions with broad bands peaking around 620 nm/435 nm, which were ascribed to the characteristic 4f65d–4f7/5d1–4f1 transitions of Eu2+/Ce3+, could be observed in phosphors of Sr3Al2O5Cl2:Eu2+/Sr3Al2O5Cl2:Ce3+, respectively. Because of the overlap spectral range between the Sr3Al2O5Cl2:Eu2+ and Sr3Al2O5Cl2:Ce3+ phosphors, the energy transfer (ET) from Ce3+ to Eu2+ occurred. The related ET process was discussed in detail. Moreover, the incorporation of Ce3+ could significantly prolong the afterglow duration of Sr3Al2O5Cl2:Eu2+ phosphor, which was due to the increase of trap concentration. Consequently, 6 h of the afterglow duration could be observed in Sr3Al2O5Cl2:1.0%Eu2+, 0.5%Ce3+ sample, exhibiting much longer than that of Sr3Al2O5Cl2: 1.0%Eu2+ (3 h). From the afterglow decay curves and the fitting results, the optimal concentration of Ce3+ for the enhanced afterglow property was experimentally determined to be 0.5%.  相似文献   

9.
Eu2+ and Mn2+ singly doped and Eu2+/Mn2+-codoped Ca4Mg5(PO4)6 phosphors were synthesized via combustion synthesis. Mn2+-singly doped Ca4Mg5(PO4)6 phosphor exhibits a single red emission in the wavelength range of 500–700 nm due to the 4T1(4G)→6A1(6S) transition of Mn2+. Eu2+/Mn2+ co-doped phosphor emits two distinctive luminescence bands: a blue one centered at 442 nm originating from Eu2+ and a broad red-emitting one peaked at 609 nm from Mn2+. Energy transfers from Eu2+ to Mn2+ were discovered by directly observing significant overlap of the excitation spectrum of Mn2+ and the emission spectrum of Eu2+ as well as the systematic relative decline and growth of emission bands of Eu2+ and Mn2+, respectively. Based on the principle of energy transfer, the relative intensities of blue and red emission could be tuned by adjusting the contents of Eu2+ and Mn2+.  相似文献   

10.
A novel and facile synthetic approach has been trialed, and attempted with success in the preparation of two phosphors namely, a red emitting CaSrSiO4:Eu3+ and a green emitting CaSrSiO4:Eu2+. These phosphors were successfully synthesized using a simple co-precipitating solvo-thermal strategy wherein tetraethyl orthosilicate (TEOS) as silica source and the acetate precursors of strontium (Sr2+), calcium (Ca2+) and europium (Eu3+) are utilized. The material so obtained is subjected to an extensive photoluminescence behavior study. The concentration of the dopant (Eu3+and Eu2+) plays a significant role in the determination of photoluminescence behavior and hence a systematic and in-depth experimental studies were done and the results are synchronized. On interpretation of the output, it came to light that an intense emission signals sparked in the red region (590 and 615 nm) in the case of phosphor doped with Eu3+, which is excited under near ultra violet (395 nm) and blue (466 nm) region. In case of the CaSrSiO4 sample doped with Eu2+, an intense broad green signal (~510 nm) is obtained under the excitation range of 350–430 nm. The results obtained are quite encouraging and made a strong confirmation as, the solvo-thermally synthesized CaSrSiO4, which is activated by the dopants namely Eu3+ and Eu2+ possesses an immense potential and it is exactly tapped by the adopted methodology. Despite its strong impact, it will also assure a strong revolution in the fabrication and thus the commercialization of white LEDs as both the red and green emitting phosphor.  相似文献   

11.
A novel blue phosphor, Sr2B2O5: Tm3+, Na+ for white light-emitting diodes (W-LEDs) was prepared by solid-state synthesis and its structure and luminescence properties were investigated. This phosphor can be effectively excited within the broad near ultraviolet (NUV) wavelength region, from 340 nm to 370 nm, and exhibits a satisfactory blue performance. The emission peaks are observed at 457 nm (blue) and 475 nm (blue), due to the respective transitions of 1D23F4 and 1G4→H6. Seven mole percent of doping concentration of Tm3+ was shown to be optimal. Concentration quenching occurs when Tm3+ concentration is beyond 7 mol%, its mechanism being explained by dipole–dipole interaction of Tm3+ and being confirmed by decay property measurements. We have made a deep analysis on the effect of charge compensation reagent on luminescence intensity. Good blue emissions with the CIE chromaticity coordinates (0.173, 0.165) could be achieved. Our results suggest that the Sr2B2O5: Tm3+, Na+ phosphor is a potential blue-emitting material.  相似文献   

12.
As-synthesized Fe3O4 nanoparticles were encapsulated with carbon layers through a simple hydrothermal process. Fe3O4/C nanoparticles were coated with YVO4:Dy3+ phosphors to form bifunctional Fe3O4@C@YVO4:Dy3+ composites. Their structure, luminescence and magnetic properties were characterized by XRD, SEM, TEM, HRTEM, PL spectra and VSM. The experimental results indicated that the as-prepared bifunctional composites displayed well-defined core–shell structures. The ∼12 nm diameter YVO4:Dy3+ shell exhibited tetragonal structure. Additionally, the composites exhibited a high saturation magnetization (13 emu/g) and excellent luminescence properties, indicating their promising potential as multifunctional biosensors for biomedical applications.  相似文献   

13.
Alkaline earth metal gallets have been identified as an important ceramic material. The crystal chemistry of many of these gallets is well explored; however, very rare studies regarding optical properties of rare earth (RE) ions doped in such gallets, particularly in Sr3Ga2O6 host, have been carried out. The present study reports on synthesis and characterization of novel Sr3Ga2O6:Eu3+ phosphors. The phosphors have been synthesized using a conventional solid state reaction method. Crystal structure, morphology and luminescence properties (excitation, emission and CIE coordinate) of these phosphors have been studied as a function of sintering temperature and Eu3+ concentration. X-ray diffraction study reveals that the phosphor sintered at low temperature (900 °C) contains an impurity phase which is removed at higher sintering temperatures and results into cubic crystalline phase of Sr3Ga2O6. Particle size of the phosphor increases with an increase in sintering temperature which results to a red shift in the peak position of excitation band lying in a broad range from 250 to 370 nm. Optimum emission intensity is attained for 0.12 mol% concentration of Eu3+ ions; above this concentration, a quenching in emission intensity is observed.  相似文献   

14.
A series of Eu2+-activated Sr9Sc(PO4)7 yellowish-green emitting phosphors were synthesized by conventional solid-state reaction. The photoluminescence (PL) properties and concentration quenching mechanism of the as-prepared phosphors were investigated. The emission spectrum exhibits a broad and asymmetric band peaking at 510 nm, which corresponds to the 4f65d1→4f7 transition of Eu2+. The excitation spectrum exhibits a broad band extending from 250 to 450 nm, which matches well with the emission of near ultraviolet (n-UV) chips (350–430 nm). Non-radiative transitions between Eu2+ ions in the Sr9Sc(PO4)7 host have been demonstrated to be attributable to dipole–dipole interactions, and the critical distance was calculated to be 23.1 Å. These results indicate that Sr9Sc(PO4)7:Eu2+ phosphor could serve as a promising candidate for application in n-UV white-light LEDs.  相似文献   

15.
Y2O2S:Dy3+, Mg2+, Ti4+ white-light long-lasting phosphors were synthesized by the sol–gel method. The effect of Dy3+ doping concentration on the luminescence properties was investigated. The samples were characterized by X-ray diffraction, photoluminescence spectroscopy and thermally stimulated spectrometry. The samples doped with different concentrations of Dy3+ ions were composed of the pure Y2O2S phase. Under 359 nm UV excitation, the phosphor presented white luminescence due to mixing of the dominating emissions centered at 488 nm (blue) and 579 nm (yellow), corresponding to 4F9/26H15/2 and 4F9/26H13/2 transitions of Dy3+, respectively. When Dy3+ concentration was 1 mol%, the CIE chromaticity diagram was (0.375,0.374), and the decay time could last for over 65 min (≥1 mcd/m2).  相似文献   

16.
In this research we prepared nanocrystalline YNbO4:Eu3+ phosphor, i.e. nanophosphor, powder using an efficient mechanochemical method followed by annealing. X-ray diffraction analysis revealed that YNbO4:Eu3+ crystallizes in monoclinic structure C2/c where, from the point of view of A and B in ABO4 compounds, cation coordination can be noted as [6+2, 4+2]. Crystallite size of about 40 nm, was estimated using Debye Scherrer's equation. Raman spectroscopy with 785 and 532 nm excitation wavelengths is performed to record a majority of materials phonon modes and to provide more in depth understanding of the YNbO4 structure. Scanning electron microscopy observations indicate that the mechanical treatment during synthesis is causing non-uniformity of the powder microstructure. High resolution photoluminescent measurements upon UV excitation showed intense emission coming from f–f transitions of the europium ion with the lifetime of 0.68 ms, suggesting that the obtained YNbO4:Eu3+ is a good potential phosphor. A comparison of emissive properties with microcrystalline YNbO4:Eu3+ was made and it showed higher values of emission intensity and lifetime of the nanocrystalline sample.  相似文献   

17.
NaGd(MO4)2:R (M=W, Mo, R=Eu3+, Sm3+, Bi3+) phosphors were synthesized by solid-state reaction. The structure and photoluminescence properties of the samples were characterized using X-ray powder diffraction and fluorescence spectrophotometry. The 5D07F2 transition of Eu3+, which led to a red emission of the phosphors, was dominantly observed in the photoluminescence spectra. The doped Bi3+ and Sm3+ efficiently sensitized the emission of Eu3+ and effectively extended and strengthened the absorption of near-UV light with wavelengths ranging from 395 to 405 nm. In addition, energy transfers from Bi3+ to Eu3+ and from Sm3+ to Eu3+ occurred. The chromaticity coordinates of the obtained phosphors were close to the standard values of the National Television Standard Committee (x=0.670, y=0.330). The results suggest that NaGd(WO4)2−y(MoO4)y:Eu3+, Sm3+, Bi3+ is an efficient red-emitting phosphor for light-emitting diode applications.  相似文献   

18.
This paper reports on the photoluminescence properties of Na1−yLiyCa1−xPO4:xEu2+ phosphors synthesized by a solid state reaction method. The prepared phosphors have been thoroughly characterized by means of X-ray diffraction (XRD), Field-emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectrum (FTIR), Raman spectrum, Thermo gravimetric and differential thermal analysis (TG–DTA) and photoluminescent spectral measurements. The structure of Na1−yLiyCa1−xPO4:xEu2+ phosphors were found to be orthorhombic in nature with a sphere-like morphology and having the particle size in micrometer range. The excitation spectra of NaCaPO4:Eu2+ phosphors revealed a broad excitation band having its maximum intensity at 373 nm and ranging from 250 m to 450 nm. Incidentally, it matches well with the ultraviolet (UV) radiation of light-emitting diodes (LEDs). Upon 373 nm excitation, these phosphors exhibited intense bluish-green emission band centered at 505 nm. The effect of sintering atmospheres and co-doping of lithium ions on the photoluminescence properties of the NaCaPO4:Eu2+ phosphors were studied and explained suitably. The obtained results indicate that the prepared NaCaPO4:Eu2+ phosphors are promising bluish-green candidates for the phosphor-converted white LED applications.  相似文献   

19.
Ca2Gd8(SiO4)6O2 (CGS) nanophosphors with different concentrations of single-doped Dy3+ ions and co-doped Dy3+/Eu3+ ions were prepared by a solvothermal synthesis. Very fine particles in the nanometer range could be achieved by this method, as evidenced by transmission electron microscope measurements. The hexagonal phase of the oxyapatite structure was confirmed by X-ray diffraction patterns. The energy transfer between Eu3+ and Dy3+ ions was investigated by photoluminescence excitation and emission properties. These phosphors had absorption bands in the UV and NUV region, which are suitable for the emission wavelength of UV or NUV light-emitting diodes (LEDs). With increasing the Eu3+ ion concentration, the emission peak intensity corresponding to the 5D07F2 transition increased and the yellow (4F9/26H13/2) emission intensity also increased compared to the blue (4F9/26H15/2) emission intensity due to the increased energy transfer between Dy3+ to Eu3+ ions. Thus, the Eu3+ ions compensated the red emission component of the Dy3+ doped CGS nanophosphors. Such phosphors are expected to have potential applications for NUV based white LEDs.  相似文献   

20.
A series of single-phased emission-tunable Ca3Si2O7:Ce3+, Eu2+ phosphors has been prepared by the solid-state reaction method. The phosphors show two intense emission bands at about 450 nm and 610 nm, which are attributed to the 5d→4f transitions of Ce3+ and Eu2+ ions, respectively. The emission colors of Ca3Si2O7:Ce3+, Eu2+ phosphors vary from blue (0.148, 0.147) to white (0.309, 0.260), and eventually to orange (0.407, 0.319) by tuning the Eu2+/Ce3+ ratio. Energy transfer from Ce3+ to Eu2+ is studied by luminescence spectra and energy transfer efficiency. The results show an electric quadrupole–quadrupole interaction plays an important role in the process of energy transfer. The phosphors with tunable emission are suitable for application in white light-emitting diodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号