首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymorphism found in nanofibres of polyamide 6 (PA6) and PA6/clay nanocomposite (PA6-NC), prepared by an electrospinning process, was studied by transmission electron microscopy (TEM) and variable-temperature wide angle X-ray scattering (WAXS), and compared with the polymorphic changes occurring in the pre-electrospun bulk materials. TEM results, concerning morphology and dispersion of the nanoclays, reveal that the produced electrospun nanofibres have an average diameter of 50 nm, and nanoclays are much more uniformly dispersed in the electrospun PA6-NC fibres than in the pristine PA6-NC. According to WAXS measurements, both types of electrospun nanofibres predominantly consist of γ-form crystals of PA6. Upon heating, from room temperature to the melting point, a number of successive transitions are observed for both systems, namely, crystalline γ to α′, α′ to α and α to the “amorphous” δ-form due to breakage of hydrogen bonds. On subsequent cooling, it has been observed, for the first time, that the development of crystalline forms for both systems is quite different from each other. The molten electrospun pure PA6 fibres first crystallize in the high temperature α′-form, and then they show the room temperature α-form. For these nanofibres, during a temperature cycle of heating and cooling, the initial γ-form crystals completely turn into the α-form crystals as in bulk PA6. In contrast, for the electrospun nanofibres of the PA6-NC, the γ-form crystals are preserved after completing a thermal cycle down to room temperature. The present findings on the evolution of polymorphism in the electrospun nanofibres of both systems provide useful information regarding their use as reinforcing elements in polymer composites.  相似文献   

2.
Morphology and mechanical properties of Nylon 6/MWNT nanofibers   总被引:2,自引:0,他引:2  
Aligned nanofibrous nanocomposites of Nylon 6 and surface-modified multiwalled carbon nanotubes (MWNTs) were successfully synthesized via electrospinning, using a rotating mandrel. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM) and dynamic mechanical analysis (DMA) were done to characterize the morphology and properties of the nanofibrous mats. DSC and XRD observations suggested the presence of MWNTs and the high speed take-up facilitated the transformation of Nylon 6 from γ phase crystals to a mixture of α and γ phase crystals. TEM and WAXD were used to characterize the nanotube and molecular orientations, respectively. The storage modulus of the fibers increased significantly although the concentration of MWNTs was relatively low (0.1 and 1.0 wt%). Thus the combination of carbon nanotubes and nanoscale processing results in structural and mechanical enhancements of Nylon 6.  相似文献   

3.
Nanofibers embedded with the functional polymers exhibited a charged surface. These fibers were incorporated into microfluidic channels to provide high surface area and functional surfaces within a microfluidic system. The positively or negatively charged nanofibers were fabricated by blending of hydrophilic PVA with functional polymers with available amine groups or carboxyl groups, respectively. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) were used to confirm the presence and location of blend components in the spun fibers. Thermally stimulated current (TSC) measurements confirmed that surface-charged nanofibers showed positive or negative currents according to the functional polymers embedded with the PVA polymer. The surface-charged nanofibers were incorporated into microfluidic channels. Poly(vinyl alcohol) (PVA) blend nanofibers formulated to create variations in fiber surface chemistry were electrospun to form patterns around gold microelectrodes on a poly(methyl methacrylate) (PMMA) chip surface. These nanofiber patterns were integrated into polymer-based microfluidic channels to create a functionalized microfluidic system with potential applications in bioanalysis. Spinning conditions and microelectrodes were optimized to enable an alignment of the nanofibers across the microfluidic channel. Importantly, nanofibers within the assembled microfluidic channels were robust and did not break or wash out of the channel under extreme fluid flow conditions at linear velocities up to 13.6 mm/s.  相似文献   

4.
Biodegradable segmented l-tyrosine polyurethanes (LTUs) have been developed using a tyrosine based chain extender desaminotyrosine-tyrosyl-hexyl ester (DTH). Two such biodegradable LTUs, polycaprolactone diol-hexamethylene diisocyanate-desaminotyrosine-tyrosyl-hexyl-ester (PCL-L-DTH) and polycaprolactone diol-4,4′-methylenebis(cyclohexyl isocyanate)-desaminotyrosine-tyrosyl-hexyl-ester (PCL-C-DTH), have been electrospun, and the effect of solution concentration on the membrane properties has been examined. Scanning electron microscopy (SEM) images show that fiber diameter and structural morphology of the electrospun LTU membranes are a function of the polymer solution concentration. It has been observed all concentrations of PCL-L-DTH lead to the formation of beaded nanofibers; whereas, PCL-C-DTH polyurethane leads to the formation of non-beaded fibers with diameters in the micrometer range. Furthermore, the average fiber diameter enlarges with an increase in the polymer solution concentration. Hydrolytic degradation studies show similar mass loss profiles for both PCL-L-DTH and PCL-C-DTH polyurethane membranes over a period of 28 days. However, the loss of structure and morphology is more readily observed in the case of PCL-L-DTH membranes. Based on the results obtained from this investigation, the electrospun non-woven LTU membranes show excellent potential for biomedical applications such as formulation of drug/gene delivery devices and tissue engineering scaffolds.  相似文献   

5.
Reza Lalani 《Polymer》2011,52(23):5344-5354
Poly(sulfobetaine methacrylate) (PSBMA) can be potentially utilized in filtration and wound dressing applications for which nanofibers structures are highly desirable. In this work, a series of PSBMAs with different molecular weights were synthesized, characterized, and electrospun into nanofibers. The polymer molecular weight was controlled by varying the amount of redox initiators in the free radical polymerization of SBMA, with the highest molecular weight achieved at an intermediate initiator concentration. From the intrinsic viscosity measurements, the Mark-Houwink parameters for PSBMA (at 21 °C in 0.2 M NaCl solution) was determined as a = 0.4071 and k = 2.06 × 10−3. Thermogravimetric (TGA) analysis shows that the PSBMAs were thermally stable up to at least 250 °C. Fourier transform infrared (FTIR) spectra indicate major structural changes of both polymer backbone and pendant groups by thermal degradation. Results from differential scanning calorimetry (DSC), TGA, and FTIR characterizations all demonstrate the existence of water strongly bound in PSBMA. DSC analysis also indicates different degrees of crystallinity for the PSBMAs of different sizes. Viscosity of the PSBMA solutions, a critical parameter for electrospinning, increased with the solution concentration and the polymer molecular weight. For the electrospinning of PSBMA, it was found that high solution concentration and high molecular weight favored the formation of smooth fibers while low solution concentration or low molecular weight led to the formation of beaded fibers or beads. Fiber diameters ranging from 200 to 570 nm were achieved by controlling solution concentration and polymer molecular weight. The characterization data and electrospinning results were finally correlated to explore the relationships between fiber formation, viscosity, molecular weight, and concentration.  相似文献   

6.
We present a simplified approach to understanding the mechanics of stable electrospinning jets based on electrohydrodynamic theory that explicitly incorporates the extensional rheology of polymeric fluids. Flow regimes of electrospun jets are identified by analogy to uniaxial extension of a fluid jet. These flow regimes predict the limiting kinematics of electrospinning jets and identify dimensionless parameters important to the control and operation of electrospinning processes. In situ kinematic measurements validate model assumptions and scaling predictions, and allow the reduction of entire jet radius and velocity profiles to several key parameters. The model predictions are shown to hold both above and below the entanglement concentration, as well as for solutions with added electrolyte and increased conductivity. The analysis also enables direct measurement of the apparent extensional viscosity of solutions at the high extension rates experienced during electrospinning. Finally, dimensional analysis of the model yields a correlation for electrospun fiber diameter in terms of measurable fluid properties, controlled process parameters, and measured jet variables, demonstrating the influence of mechanics in the straight portion of the jet on ultimate fiber morphology.  相似文献   

7.
The fiber spinning technique of electrospinning was optimized in order to prepare unidirectional aligned, structurally oriented, and mechanically useful carbon precursor fibers with diameters in the nanoscale range. The fiber spinning velocity and fiber draw ratio was measured to be between 140 and 160 m/s and 1:300,000, respectively, for fibers spun from 10 wt% polyacrylonitrile (PAN) solutions with dimethylformamide (DMF). A high-speed, rotating target was used to collect unidirectional tows of PAN fibers. Aligned and (+) birefringent fibers with diameters between 0.27 and 0.29 μm (FESEM) were collected from electrospinning 15 wt% PAN in DMF solutions at 16 kV onto a target rotating with a surface velocity between 3.5 and 12.3 m/s. Dichroism measurements (Polarized FTIR) of the nitrile-stretching vibration show an increase in the molecular orientation with take-up speed. Wide angle X-ray diffraction patterns (WAXD) show equatorial arcs from the reflection at and (1120) reflection at A maximum chain orientation parameter of 0.23 was determined for fibers collected between 8.1 and 9.8 m/s. Twisted yarns of highly aligned PAN nanofibers with twist angles between 1.1 and 16.8° were prepared. The ultimate strength and modulus of the twisted yarns increase with increasing angle of twist to a maximum of 162±8.5 MPa and 5.9±0.3 GPa, respectively, at an angle of 9.3°.  相似文献   

8.
Electrospinning of polyurethane fibers   总被引:5,自引:0,他引:5  
A segmented polyurethaneurea based on poly(tetramethylene oxide)glycol, a cycloaliphatic diisocyanate and an unsymmetrical diamine were prepared. Urea content of the copolymer was 35 wt%. Electrospinning behavior of this elastomeric polyurethaneurea copolymer in solution was studied. The effects of electrical field, temperature, conductivity and viscosity of the solution on the electrospinning process and morphology and property of the fibers obtained were investigated. Results of observations made by optical microscope, atomic force microscope and scanning electron microscope were interpreted and compared with literature data available on the electrospinning behavior of other polymeric systems.  相似文献   

9.
A unique method for creating polymer nanofibers and spheres on a variety of substrates is described. Cyanoacrylate monomer vapor was collected on a solid surface and polymerized to form nanofibers. Tiny spots of initiator on the surface of a substrate and small monomer droplets in a monomer vapor appear to be required for the growth of the polycyanoacrylate nanofibers. The polycyanoacrylate nanofibers create a network and increase the specific surface area significantly.  相似文献   

10.
Mei-Ling Cheng 《Polymer》2008,49(2):546-553
Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) nanofibrous membranes were first fabricated via electrospinning from chloroform (CHCl3) or CHCl3/dimethylformamide (DMF) polymer solutions. The electrospinning conditions such as the polymer concentration, the solvent composition, and the applied voltage were optimized in order to get smooth and nano-sized fibers. The crystalline structure, the melting behaviors and the mechanical properties of the obtained nanofibrous membranes were characterized. With pure CHCl3 as the solvent in the electrospinning process, the finest smooth PHBHHx fibers were about 1 μm in diameter. When DMF is added to CHCl3 as a co-solvent, the conductivity and volatility of the solution increased and reduced, respectively, and the electrospinnability of the polymer solution increased as a result. The averaged diameters of PHBHHx fibers could be reduced down to 300-500 nm when the polymer concentration was kept at 3 wt%, the ratio of DMF/CHCl3 was maintained at 20/80 (wt%), and the applied voltage was fixed at 15 kV during electrospinning. WAXD and DSC results indicated that the crystallization of the PHBHHx nanofibers was restricted to specific crystalline planes due to the molecular orientation along the axial direction of the fibers. The crystallization behaviors of the electrospun nanofibers were significantly different from that of the cast membranes because of the rapid solidification and the one-dimensional fiber size effect in the electrospinning process. Mechanically, the electrospun PHBHHx nanofibrous membranes were soft but tough, and their elongation at break averaged 240-300% and could be up to 450% in some cases. This study demonstrated how the size of electrospun PHBHHx fibers could be reduced by adding DMF in the solvent and gave a clue of the presence of oriented molecular chain packing in the crystalline phase of the electrospun PHBHHx fibers.  相似文献   

11.
Upward needleless electrospinning of multiple nanofibers   总被引:2,自引:0,他引:2  
A.L. Yarin  E. Zussman 《Polymer》2004,45(9):2977-2980
A new approach to electrospinning of polymer nanofibers is proposed. A two-layer system, with the lower layer being a ferromagnetic suspension and the upper layer a polymer solution, is subject to a normal magnetic field provided by a permanent magnet or a coil. As a result, steady vertical spikes of magnetic suspension perturbed the interlayer interface, as well as the free surface of the uppermost polymer layer. When a normal electric field is applied in addition to the system, the perturbations of the free surface become sites of jetting directed upward. Multiple electrified jets undergo strong stretching by the electric field and bending instability, solvent evaporates and solidified nanofibers deposit on the upper counter-electrode, as in an ordinary electrospinning process. However, the production rate is shown to be higher.  相似文献   

12.
The role of solvent evaporation on the crystalline state of electrospun Nylon 6 fibers was examined by electrospinning into a closed chamber filled with different concentrations of solvent vapor. It was found that the thermodynamically stable α form became increasingly dominant in Nylon 6 fibers electrospun out of both 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and formic acid as the vapor phase solvent concentration increased. It is believed that the formation of the metastable γ form is due in part to the fast solvent evaporation kinetics associated with the electrospinning process. By varying the vapor phase concentration and thus the rate of solvent evaporation during electrospinning, we were able to vary the resulting crystal structure of the electrospun Nylon 6, as shown by XRD, Raman and FTIR.  相似文献   

13.
Electrospinning method uses electrical force to produce a polymer nanofiber from a polymer solution. The surface morphology and the pore formation of e-spun fiber have been studied by many variables that are involved in different polymer concentrations and solvent mixing ratios. Another major factor affecting fiber morphology and size distribution is the relative humidity. The interaction between the relative humidity and the solvent evaporation affects the distribution of electric charge on the surface of the e-spun fiber. The higher the electric density, the thinner the fiber that can be produced in low humidity conditions. The relative humidity and solvent evaporation can create pores on the fiber surface. The pores can be formed under the condition of 30% relative humidity using 100% of THF solvent. The boundary of the pores has expanded and becomes formless due to the agglomeration of each pore, which can decrease the evaporating capacity.  相似文献   

14.
Using a facile synthesis route, cadmium oxide (CdO) nanofibers in the diameter range of 50–60 nm have been prepared employing the electrospinning technique followed by a single-step calcination from the aqueous solution of polyvinyl alcohol (PVA) and cadmium acetate dihydrate. Electron microscopy (EM) and the Brunauer–Emmett–Teller (BET) technique were employed to characterize the as-spun nanofibers as well as the calcined product. The specific surface area of the product was calculated to be 42.6711 m2 g−1. Infrared (IR) absorbance spectroscopy and X-ray powder diffractometery were conducted on the samples to study their chemical composition as well as their crystallographic structure. The study on the optical properties based on the photoluminescence (PL) spectrum demonstrated that the emission peaks of CdO nanofibers are centered at 493 and 528 nm. The direct bandgap of the CdO nanofibers was determined to be 2.51 eV.  相似文献   

15.
Submicron polystyrene (PS) fibers were prepared by electrospinning of an aqueous dispersion of PS latex and a small amount of poly(vinyl alcohol) (PVA) and subsequent extraction by water. Depending on particle size, surfactant, ratio of PS:PVA, and applied voltage fibers of different morphology and water stability were obtained. Analysis of latex fibers by TEM revealed hexagonal packaging of particles within the fibers.  相似文献   

16.
Carbon nanofibers with diameters of 200-300 nm were developed through stabilization and carbonization of aligned electrospun polyacrylonitrile (PAN) nanofiber bundles. Prior to the oxidative stabilization in air, the electrospun PAN nanofiber bundle was tightly wrapped onto a glass rod, so that tension existed during the stabilization. We also investigated several carbonization procedures by varying final carbonization temperatures in the range from 1000 to 2200 °C. The study revealed that: (1) with increase of the final carbonization temperature, the carbon nanofibers became more graphitic and structurally ordered; (2) the carbon nanofiber bundles possessed anisotropic electrical conductivities, and the differences between the parallel and perpendicular directions to the bundle axes were over 20 times; and (3) the tensile strengths and Young's moduli of the prepared carbon nanofiber bundles were in the ranges of 300-600 MPa and 40-60 GPa, respectively.  相似文献   

17.
Tao Han  Alexander L. Yarin 《Polymer》2008,49(8):2160-2169
A novel phenomenon, a pendulum-like motion of the usually straight electrified jet was observed experimentally and theoretically modeled. Pendulum-like motion arises due to repulsive Coulomb force between the straight electrified jet and the charges accumulated on the collector. This electrical force repels the similarly charged landing jet segment in the collector plane. The motion is transferred to the whole jet via elastic stress sustained by the jet. The initially straight segment of the jet is arched. The pendulum-like motion has frequencies of the order of 10-102 Hz. The pendulum-like jets were collected onto grounded horizontal electrodes moving laterally at a constant velocity or being at rest. Different two-dimensional patterns were produced by varying the applied voltage, the separation between the tip and collector and the velocity vector of the collector.  相似文献   

18.
In electrospinning, electrostatic interaction between charged fibers and the collection substrate can result in poor and non-uniform coverage, particularly when electrically insulating substrates are used, because they are prone to surface charge accumulation. Charged electrospun Nylon-4,6 nanofiber coatings were deposited onto substrates of varying size, conductivity and morphology. The density and uniformity of the nanofiber coatings were significantly enhanced, both on insulating and on conducting substrates, by a new method based on rapid sequential deposition of charged nanofibers and oppositely charged ions onto substrates that were mounted onto a rotating collecting electrode (mandrel) located between an electrospinning source and a focused ion source. Sequential fiber/ion deposition presumably led to surface charge neutralization or reversed charging, and minimization of electrostatic fiber/substrate interactions. An electrostatics model was developed to interpret the experimental results. It was also theoretically argued that any degree of ion charging will induce continuous fiber accumulation.  相似文献   

19.
Poly(butylene terephthalate), polypropylene, and polystyrene nanofibers with average diameters less than 500 nm have been produced by a single orifice melt blowing apparatus using commercially viable processing conditions. This result is a major step towards closing the gap between melt blowing technology and electrospinning in terms of the ability to produce nano-scale fibers. Furthermore, analysis of fiber diameter distributions reveals they are well described by a log-normal distribution function regardless of average fiber diameter, indicating that the underlying fiber attenuation mechanisms are retained even when producing nanofibers. However, a comparison of the breadth of the distributions between mats with differing average fiber diameters indicates that the dependence of the breadth with average fiber diameter is not universal (i.e., it is material dependent). Finally, under certain processing conditions, we observe fiber breakup that we believe is driven by surface tension and these instabilities may represent the onset of an underlying fundamental limit to the process.  相似文献   

20.
Buckling of jets in electrospinning   总被引:1,自引:0,他引:1  
Tao Han  Alexander L. Yarin 《Polymer》2007,48(20):6064-6076
Various buckling instabilities of electrospinning jets were observed and compared with the buckling instabilities of uncharged fluid jets. Buckling instability arises due to jet compression at impingement on a collector surface and occurs independently of the electrical bending instability. The velocity, diameter, density and viscosity of the electrospinning jets are the key factors that determine the buckling frequency. The electrically charged jets impinging onto grounded, horizontal or inclined (wedge-like) electrodes moving laterally at a constant velocity are studied experimentally. Straight and bending (electrospinning) jets emerge at short and sufficiently long inter-electrode distances, respectively. The experiments show that both straight segment and bending jets, when impinging onto a counter-electrode, buckled and produced patterns of meandering deposits. In the case of bending electrospun jets these short-length buckling patterns were superimposed on the bending loops found in the deposits. Buckling-related and bending-related morphologies are easily distinguishable. The buckling patterns have frequencies of the order of 105-106 Hz, whereas the bending loops are formed at the frequencies of the order of 103 Hz. The deposited buckling patterns include sinuous, zigzag-like, figures-of-eight, recurring curves, coiled and other structures that resembled many patterns created by uncharged jets of highly viscous fluids impinging a hard flat surface. In addition, several new morphologies which were not observed before with uncharged jets were found. The experimentally measured frequencies of the buckling patterns were compared to the theoretical predictions and a reasonable agreement was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号