首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
图像特征点匹配算法是实现目标识别的一种有效算法,目前图像特征点匹配算法耗时大,而且在匹配过程中存在伪匹配点。提出了一种改进算法:在初始特征点检测阶段,根据图像大小动态构造高斯金字塔图层,提高了算法的实时性和准确性;采用设置阈值的方法对初始特征点进行优化,减少匹配时间。在特征点匹配阶段,利用提取特征点中正确匹配点与伪匹配点坐标值差异较大这种特性,对伪匹配点进行去除,最后进行目标识别。实验结果表明,在尺寸大小为800×600的图像中,SURF算法提取特征点数225个,耗时92.499 ms, Octave 3;特征点匹配率97.50% ,耗时349.716 ms。提出的改进方法更为简单有效,减少了特征点匹配的误差,能够有效缩短图像配准时间。  相似文献   

2.
一种基于仿射变换的SURF图像配准算法   总被引:3,自引:1,他引:3  
传统的SURF算法对仿射变化较大的图像配准效果差。为此,提出了一种仿射-加速鲁棒性特征(Affine-SURF)的图像配准算法,通过增加经度角和纬度角不变特征引入仿射形变参数来模拟图像在不同角度的变形。实验结果表明,与SIFT、SURF、MSER等配准算法相比,该算法能够获得更多特征匹配对,提高了算法对仿射变化的鲁棒性。  相似文献   

3.
传统的全景图像配准多采用基于SIFT的方法,该方法数据量大、时间效率低。提出了一种基于SURF的全景图像快速配准方法。运用SURF提取特征点,计算特征描述符;运用低时间复杂度的K-D树最近邻搜索法实现特征点快速匹配;利用RANSAC算法剔除误匹配点;最后估计出两幅全景图像的变换矩阵。测试表明:算法具有较高的时间效率和良好的鲁棒性。  相似文献   

4.
基于SURF特征的高动态范围图像配准算法   总被引:1,自引:0,他引:1  
同一场景的多曝光图像序列被广泛的应用于高动态范围图像(HighDynamicRangeImage)的合成中。但是,在多曝光图像序列的采集过程中,相机抖动、场景运动等因素会对合成图像的质量产生较大的影响。此外,离镜头较近的大目标往往由于显著的三维形状,在序列图中产生较大的视差效应,也会对合成图像产生消极影响。该文提出一种基于SURF特征点的三维图像配准算法,实验证明该算法在近距离大目标情形下较之传统配准算法MTB(MeanThresholdBitmap,均值二值化)可以获得更好效果。  相似文献   

5.
提出了一种基于SURF特征和RANSAC算法的图像配准方法。首先通过SURF算法对图像进行特征点检测,将欧式距离作为相似性测度进行特征点粗匹配,并通过RANSAC算法剔除误匹配点对;然后利用正确的匹配点对求解仿射变换模型从而实现图像的精确配准。实验结果表明了该方法的精确性和有效性。  相似文献   

6.
对于传统的图像匹配算法存在特征信息少、错误匹配率高的问题,提出了一种基于改进的SURF算子和通过透视变换模型的图像配准算法。首先对传统的SURF描述符进行改进来进行特征点检测,然后用FLANN(Fast Library for Approximate Nearest Neighbors)搜索算法对检测出的角点进行粗匹配,再采用随机抽样一致(Random Samples Consensus,RANSAC)算法来消除粗匹配中误匹配的特征点对,最后将保留下来的精确匹配角点通过透视变换模型对图像进行配准。实验表明,该方法在光照、平移和模糊、旋转和尺度、视角变化具有更优的性能,提高了SURF算法的配准精度。  相似文献   

7.
针对无人机遥感图像畸变较大,而传统快速鲁棒(Speeded-Up Robust Features,SURF)算法不能提供足量兴趣点的问题,提出了一种基于Harris角点和SURF算法的无人机遥感图像配准方法。首先构建多尺度空间,并在多尺度空间下检测Harris角点作为兴趣点;然后计算各兴趣点的64维SURF描述子;最后运用K-d树匹配搜索策略得到两幅图像的匹配点对。将该方法与传统SURF配准方法进行实验对比,实验表明改进算法在保证实时性的情况下可以获得更多的匹配点对,并具有更高的配准精度。  相似文献   

8.
周煜博  刘立群 《软件》2023,(2):23-26
针对To F与可见光异源图像配准效果不佳的问题,提出一种基于非下采样剪切波和尺度不变特征变换改进的异源图像配准算法。首先将To F和可见光图像分解为多尺度图像;然后以多尺度图像和原图像为基础,使用Sift算法进行特征点提取,将提取的特征点进行统一的粗匹配,最后使用RANSAC算法对匹配特征点提纯,进一步筛选特征点,完成配准。实验结果表明,该算法具有较强的鲁棒性。  相似文献   

9.
本文主要针对基于SURF算法的图像配准技术进行改进,目前在SURF算法中使用的特征点描述子没有充分考虑到特征点周围的信息,匹配正确率不高。针对这一点,改进的主要方法是在匹配的过程中增加了灰度差直方图描述子,使得匹配精度提高。图像配准算法在考虑提高配准精度的同时,也要兼顾算法的时间,通过实验证明,改进的算法可以满足以上两点。  相似文献   

10.
针对传统三维模型配准方法存在对点云初始位置有一定要求、模型配准的精度有 时不高等问题,提出了一种基于三维模型投影图像 SURF 特征提取的三维模型配准方法。首先 通过扫描三维模型数据确定投影图像的范围,判断每个投影图像像素所隶属的模型网格,并求 解从投影图像到纹理图像的映射关系,从而获取二维投影图像;然后对这两幅投影图像分别进 行 SURF 特征点的选取与特征值的计算,并按 SURF 特征值进行特征匹配,再根据投影图像像 素点与三维网格端点的映射关系计算三维特征点对;最后通过匹配的特征点对求取模型变换矩 阵完成三维模型的配准。实验结果表明,该方法在配准时间变化不大的前提下,有效提高了配 准精度,并具有较好的鲁棒性。  相似文献   

11.
基于SUSAN算法的图像配准   总被引:1,自引:0,他引:1  
文杨天  李征  吴仲光 《计算机应用》2006,26(10):2380-2382
通过检测物体的特征点来完成两幅图像的配准。根据USAN区域的描述,采用简化了的SUSAN算法检测刚体的特征点,然后通过找到的特征点和刚体形状不变的特性采用特征点之间的几何关系来配准。实验的结果表明,在无旋转条件下的刚体图像配准中,该算法在特征点提取和图像配准过程中速度比较快。  相似文献   

12.
针对传统互信息配准方法计算量较大且未利用图像空间信息的缺点,提出了一种结合SURF描述符和广义近邻图的图像配准算法。该算法用SURF从图像中提取尺度空间特征点并获得特征点描述子,然后用广义近邻图来估计Rényi熵与互信息。该算法结合了SURF描述子的鲁棒性和广义近邻图估计Rényi熵的高效性。实验结果表明,对于真实遥感图像,该算法在配准准确度、鲁棒性和速度上都明显优于几种传统配准方法。  相似文献   

13.
针对SURF算法中快速Hessian矩阵行列式检测出的特征点的不连续现象,从而造成的旋转,模糊和光照变化适应性较差的不足,提出一种旋转SURF检测算子的图像配准新方法;该算法通过将SURF算法的积分图像盒子滤波模板逆时针旋转45度,引入一种可以检测角度旋转的滤波核提升检测算子对不同图像变换的匹配性能,保证新的检测算子与原算法较好的结合,同时利用改进的单纯形算法依据输入图像进行参数优化;仿真结果表明,该方法不仅保留了算法的速度优势,缩短了配准时间,而且在图像模糊变换,光照变换和JPEG压缩变换方面性能有明显的提升,此外对视角变换以及小尺度变换性能也有提高。  相似文献   

14.
针对SURF描述子仅利用特征点的局部邻域信息而对于局部场景发生变化的图像容易产生误匹配的现象,提出了图像多尺度配准的小波域SURF算法。该方法对图像进行小波分解,利用低分辨率上得到的变换参数剔除高分辨率上的错误匹配,得到精确匹配点对,对图像进行配准。实验结果表明,该方法能有效地剔除误匹配点,提高图像配准的精度。  相似文献   

15.
针对SURF算法提取图像特征点较少的问题,提出了一种经直方图均衡化处理,重构SURF尺度空间(R-SURF)的图像特征提取方法。该方法能提高图像特征点检测数目,同时保持较高的匹配率,并且继承SURF算法的良好特性。将算法与SURF和C-SURF算法进行比较实验,结果表明R-SURF具有更好的特征检测能力。  相似文献   

16.
针对地面激光点云的分辨率不同等问题,提出一种不借助额外装置,把二维图像与三维点云相结合的初始配准方法。把不同分辨率点云均匀滤波,根据深度值把三维点云转化为二维灰度图,利用SURF算法提取图像的特征匹配点对;根据映射关系找到三维特征匹配点,利用单位四元数法求出变换矩阵完成点云初始配准。实验结果表明,该算法对于地面激光数据的配准,无论从配准的精度上还是时间上均有很大提高。  相似文献   

17.
提出一种基于直觉模糊距离的特征匹配算法.首先,从基准图像和待配准图像中提取特征,并将其直觉模糊化;然后,定义特征间的直觉模糊度量方法,从相似程度和不相似程度2个方面对直觉模糊集间距离进行计算;最后,利用直觉模糊集的排序方法解决特征匹配问题,通过构建匹配矩阵实现特征的匹配.实验表明,所提出的基于直觉模糊集的图像配准方法是有效的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号