首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Catalytic wet oxidation of H2S to sulfur on Fe/MgO catalyst   总被引:1,自引:0,他引:1  
The room temperature wet catalytic oxidation was conducted in a batch reactor with Fe/MgO catalyst. Fe/MgO catalyst was prepared by the dissolution–precipitation method. XRD and temperature-programmed reductions (TPR) indicate that Fe oxide in the Fe/MgO is finely dispersed in the MgO support. The high H2S removal capacities of Fe/MgO can be explained by the finely dispersed iron oxide MgO. The H2S removal capacities of Fe/MgO are dependent on oxygen partial pressure (1.0 g H2S/gcat in air and 2.6 g H2S/gcat in oxygen). The valence state analysis of Fe/MgO catalyst suggests that the H2S oxidation on Fe/MgO can occur by a redox couple reaction, reducing Fe3+ into Fe2+ by H2S and oxidizing Fe2+ to Fe3+ by O2.  相似文献   

2.
铈锆固溶体CexZr1-xO2上H2S的选择性催化氧化性能   总被引:1,自引:0,他引:1  
采用共沉淀法合成一系列具有不同Ce/Zr物质的量比的铈锆固溶体CexZr1-xO2,考察Ce/Zr比例对H2S选择氧化反应催化活性的影响。通过XRD、BET、Raman、XPS、CO2-TPD、O2-TPD、H2-TPR等手段对铈锆固溶体的晶体结构、表面性质、碱性位以及氧化还原性等进行表征。结果表明,所有的铈锆固溶体催化剂均可以在化学计量比的氧气下具有优良的低温催化活性,催化活性随着Ce/Zr比例的提高而增加,其中Ce0.9Zr0.1O2活性最高,(160~260) ℃转化率均保持在95%以上,在180 ℃时硫收率可达到97%,这主要是因为Ce0.9Zr0.1O2具有最多的中度碱性位、活性位数量和强的氧化还原性。同时推测Ce4+为催化反应的活性位,并遵循氧化还原机理。此外,催化剂的失活主要是由于催化剂表面生成硫酸盐物种,消耗了活性组分Ce4+。  相似文献   

3.
The kinetics of CO and H2 oxidation over a CuO-CeO2 catalyst were simultaneously investigated under reaction conditions of preferential CO oxidation (PROX) in hydrogen-rich mixtures with CO2 and H2O. An integral packed-bed tubular reactor was used to produce kinetic data for power-law kinetics for both CO and H2 oxidations. The experimental results showed that the CO oxidation rate was essentially independent of H2 and O2 concentrations, while the H2 oxidation rate was practically independent of CO and O2 concentrations. In the CO oxidation, the reaction orders were 0.91, −0.37 and −0.62 with respect to the partial pressure of CO, CO2 and H2O, respectively. In the H2 oxidation, the orders were 1.0, −0.48 and −0.69 with respect to the partial pressure of H2, CO2 and H2O, respectively. The activation energies of the CO oxidation and the H2 oxidation were 94.4 and 142 kJ/mol, respectively. The rate expressions of both oxidations were able to predict the performance of the PROX reactor with accuracy. The independence between the CO and the H2 oxidation suggested different sites for CO and H2 adsorption on the CuO-CeO2 catalyst. Based on the results, we proposed a new reaction model for the preferential CO oxidation. The model assumes that CO adsorbs selectively on the Cu+ sites; H2 dissociates and adsorbs on the Cu0 sites; the adsorbed species migrates to the interface between the copper components and the ceria support, and reacts there with the oxygen supplied by the ceria support; and the oxygen deficiency on the support is replenished by the oxygen in the reaction mixture.  相似文献   

4.
Vanadium oxide supported on mesoporous zirconium phosphate catalysts has been synthesized, characterized and tested in the selective oxidation of H2S to sulfur. The nature of the vanadium species depends on the V-loading of catalyst. Catalysts with a V-content lower than 4wt% present both isolated vanadium species and V2O5 crystallites. However, V2O5 crystallites have been mainly observed in catalysts with higher V-content, although the presence of isolated V-species on the surface of the metal oxide support cannot be completely ruled out. The catalytic behaviour also depends on V-loading of catalysts. Thus, while the catalytic activity of catalysts can be related to the number of V-sites, the catalyst decay is clearly observed in samples with low V-loading. The characterization of catalysts after the catalytic tests indicates the presence of sulfur on the catalyst, which is favoured on catalysts with low V-loading. However, a clear transformation of V2O5 to V4O9 can be proposed according to XRD and Raman results of used catalysts with high V-loading. The importance of V5+–O–V4+ pairs in activity and selectivity is also discussed.  相似文献   

5.
Mohan S. Rana  J. Ancheyta  P. Rayo  S.K. Maity 《Fuel》2007,86(9):1263-1269
The influence of H2S (0-559.6 kPa) on Maya crude hydrotreating is investigated in an integral fixed bed up-flow micro reactor. The added H2S inhibits hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) while asphaltene conversion (HDAs) remained almost unaffected. On the other hand, a promotional effect is found for hydrodemetallization (HDM). The observed variation in HDS and HDM conversions suggests a dual nature of catalytic sites particularly at high partial pressure of hydrogen sulfide. The promotional effect for HDM may be interpreted in terms of adsorption of metal-porphyrins on Brönsted acid sites (sulfhydryl group), which enhance hydrogenation of metal-porphyrins and convert them into the corresponding metal-chlorin structure in a first step of reaction. The final step in the HDM is essentially hydrogenolysis (metal-nitrogen) and requires the presence of an anionic vacancy (CUS). The conversion of asphaltene is also depending on the acidic nature of sulfided catalyst that is remaining either uninhibited or slightly enhanced with H2S.  相似文献   

6.
Partial oxidation of H2S over alumina catalysts in a short-contact-time reactor (SCTR) has been shown to yield hydrogen, sulfur and water as the predominant products. At a set temperature of 400 °C and a contact time of 13 ms, the conversion of H2S is 64.6% with a H2 selectivity of 20.8%, while the amount of SO2 in the products was <0.5% of the input H2S.  相似文献   

7.
The influence of the addition of 5 vol.% of carbon monoxide, hydrogen, carbon dioxide or water to the feed of partial oxidation of methane was investigated over Ni/γ-Al2O3 and Rh/γ-Al2O3 catalysts. In addition to catalytic tests, thermodynamic calculations were performed to predict the effect of these gas co-feeds. Compared to the thermodynamic trends, differences in the influence of the co-feeding on catalytic performances were observed between both catalysts. Co-feeding of CO, H2, CO2 or H2O can modify the oxidation state and dispersion of the metal component of the catalysts during reaction, and as a consequence, their performances. Changes in catalysts can be due to dynamic processes occurring during reaction. It is suggested to take these processes into account in a more complex kinetic equation for the reactions involved.  相似文献   

8.
CrOx and CrOx supported on SiO2 have been found to be active for the selective oxidation of hydrogen sulfide to elemental sulfur. The catalysts show maximum sulfur yield at a stoichiometric ratio of O2/H2S, 0.5. Amorphous Cr2O3 exhibits higher yield of sulfur and has stronger resistance against water than supported Cr/SiO2, especially at low temperatures. At high temperatures above 300°C, the sulfur yield over the supported catalyst becomes similar to amorphous Cr2O3 because the Claus reaction occurring on the silica support removes SO2 to increase the sulfur yield. Active sites are the amorphous monochromate species that can be detected as a strong temperature programmed reduction (TPR) peak at 470°C. Catalytic activity can be correlated with the amount of labile lattice oxygen and the strength of Cr–O bonding. The reaction proceeds via the redox mechanism with participation of lattice oxygen.  相似文献   

9.
A novel technology of removing H2S with cupric chloride solution was developed in this paper. Cupric as the form of CuS deposition, the CuS produced was then oxidized by excessive cupric ion in another reactor meanwhile cupric ion that has been consumed can be recovered by the oxidization of with oxygen in air, and the solution can be circulated. Moreover, the leaching kinetics of CuS by cupric ion was studied. The removal efficiency of H2S is close to 100%, and the required operating condition is mild. Compared with other wet oxidiza-tion methods, no raw material is consumed except O2 in air, the process has no secondary pollution and no problem of degradation and scale, and the absorbent is much stable and reliable.  相似文献   

10.
Phosphate of transition elements A3M4(PO4)6 (A=Fe, Ni, Zn, Mg, Cu, Cr and M=Fe, V, Cr) are prepared by solid methods, at 1223 K. Their activity in H2S selective oxidation are compared. In spite of their low specific area, the catalysts develop a good activity (up to 17% of H2S conversion for surface area lower than 1 m2 g−1) and an excellent sulphur selectivity (always higher than 95%). Screening experiments show that the best systems always contain Fe as element and, in these cases, Mössbauer characterisations evidence the establishment of Fe2+/Fe3+ mixed valency during the reaction. As shown by XANES and XRD results, the ability of the element in the divalent A site to promote the redox mechanism between M2+/M3+and H2S/S0 and to prevent sulphidation determines the catalytic activity.  相似文献   

11.
To define the roles of H2S and pyrrhotite in high temperatures employed for normal coal liquefaction, diphenylmethane hydrocracking with H2 and H2-H2S was carried out with and without pyrrhotite. H2S promotes diphenylmethane hydrocracking with H2 both in the presence and absence of pyrrhotite, and the reaction is dependent upon the H2S pressure in both instances. It is also dependent on the H2 pressure when pyrrhotite is present. The results are interpreted in terms of H2S acting as a hydrogen transfer catalyst.  相似文献   

12.
Catalytic activities of supported Pd were investigated for low temperature oxidation of methane. Pd/SnO2 catalysts demonstrated excellent activity for methane oxidation in spite of their low surface area. The catalytic activity of Pd/SnO2 was strongly affected by the preparation procedure. Impregnation of Pd on SnO2 using aqueous solution of Pd(CH3COO)2 was most effective in enhancing the catalytic activity. The catalytic activity was also improved when well-crystallized SnO2 was employed as a support material. TEM observations revealed that catalytic activity is strongly influenced by the dispersion state of Pd. For the active catalysts, strong interaction between Pd and SnO2 support was observed in the adsorption of oxygen.  相似文献   

13.
The adsorption of HCN on, its catalytic oxidation with 6% O2 over 0.5% Pt/Al2O3, and the subsequent oxidation of strongly bound chemisorbed species upon heating were investigated. The observed N-containing products were N2O, NO and NO2, and some residual adsorbed N-containing species were oxidized to NO and NO2 during subsequent temperature programmed oxidation. Because N-atom balance could not be obtained after accounting for the quantities of each of these product species, we propose that N2 and was formed. Both the HCN conversion and the selectivity towards different N-containing products depend strongly on the reaction temperature and the composition of the reactant gas mixture. In particular, total HCN conversion reaches 95% above 250 °C. Furthermore, the temperature of maximum HCN conversion to N2O is located between 200 and 250 °C, while raising the reaction temperature increases the proportion of NOx in the products. The co-feeding of H2O and C3H6 had little, if any effect on the total HCN conversion, but C3H6 addition did increase the conversion to NO and decrease the conversion to NO2, perhaps due to the competing presence of adsorbed fragments of reductive C3H6. Evidence is also presented that introduction of NO and NO2 into the reactant gas mixture resulted in additional reaction pathways between these NOx species and HCN that provide for lean-NOx reduction coincident with HCN oxidation.  相似文献   

14.
This paper presents experimental and modelling results for the oxidation of mixtures of hydrogen and carbon monoxide in a lean atmosphere. Transient light-off experiments over a platinum catalyst (80 g/ft3 loading) supported on a washcoated ceramic monolith were performed with a slow inlet temperature ramp. Results for CO alone agree with earlier results that predict self-inhibition of CO; that is an increasing light-off temperature with increasing CO concentration. Addition of hydrogen to the feed causes a reduction in light-off temperature for all concentrations of CO studied. The most significant shift in light-off temperature occurs with the addition of small amounts of hydrogen (500 ppm, v/v) with only minor marginal enhancement occurring at higher hydrogen concentrations. Hydrogen alone in a lean atmosphere will oxidise at room temperature. In mixtures of hydrogen and CO, the CO was observed to react first until a conversion of about 50% was observed, at which point the conversion of hydrogen rapidly went from 0 to 100%.

Simulations performed using literature mechanistic models for the oxidation of these mixtures predicted that hydrogen ignites first, followed by CO, a direct contradiction of the experimental evidence. Upon changing the activation energy between adsorbed hydrogen and oxygen, the CO was observed to oxidise first, however, no enhancement of light-off was predicted. The effect cannot be explained by the mechanistic model currently under discussion.  相似文献   


15.
The NiSO4 supported on Fe2O3-promoted ZrO2 catalysts were prepared by the impregnation method. Fe2O3-promoted ZrO2 was prepared by the coprecipitation method using a mixed aqueous solution of zirconium oxychloride and iron nitrate solution followed by adding an aqueous ammonia solution. No diffraction line of nickel sulfate was observed up to 20 wt.%, indicating good dispersion of nickel sulfate on the surface of Fe2O3–ZrO2. The addition of nickel sulfate (or Fe2O3) to ZrO2 shifted the phase transition of ZrO2 (from amorphous to tetragonal) to higher temperatures because of the interaction between nickel sulfate (or Fe2O3) and ZrO2. 15-NiSO4/5-Fe2O3–ZrO2 containing 15 wt.% NiSO4 and 5 mol% Fe2O3, and calcined at 500 °C exhibited a maximum catalytic activity for ethylene dimerization. NiSO4/Fe2O3–ZrO2 catalysts was very effective for ethylene dimerization even at room temperature, but Fe2O3–ZrO2 without NiSO4 did not exhibit any catalytic activity at all. The catalytic activities were correlated with the acidity of catalysts measured by the ammonia chemisorption method. The addition of Fe2O3 up to 5 mol% enhanced the acidity, surface area, thermal property, and catalytic activities of catalysts gradually, due to the interaction between Fe2O3 and ZrO2 and due to consequent formation of Fe–O–Zr bond.  相似文献   

16.
The activity of a carbon supported PtWO3 (PtWO3/C) catalyst in the CO oxidation and CO2 reduction reactions was evaluated in sulfuric acid solution at room temperature.Cyclic voltammetry combined with on-line mass spectrometry shows that the oxidation of both saturated CO adlayer and dissolved CO on PtWO3/C material commences at rather low potentials, ca. 0.18 and 0.12 V vs. RHE, respectively. However, the low-potential process seems to involve only a minor fraction of the CO adlayer, the major part of the adsorbed CO layer being oxidised at the potentials as high as those for pure Pt catalysts—ca. 0.7 V vs. RHE. PtWO3/C material was found to reversibly de-activate upon a prolonged exposure to the CO-saturated solution due to the inhibition of the hydrogen tungsten bronze formation.The reduction of CO2 on PtWO3/C leads to the formation of an adsorbate - presumably CO - on the Pt sites of the catalyst. Although the rate of the adsorbate build-up on PtWO3/C at 0.1 V is lower than that on pure Pt/C, our results indicate that upon a prolonged exposure of the PtWO3/C electrode to a CO2-saturated solution a complete poisoning of the Pt sites with the adsorbate is likely to occur at room temperature.  相似文献   

17.
Various vanadium-containing catalysts were searched for the commercial application in the selective oxidation of H2S to elemental sulfur at low temperatures (less than 250°C) in the presence of excess (more than 35 vol.%) water. In the test of binary oxides, it was found that TiVOx was the only catalyst that could sustain its activity without deactivation at 230°C. The best catalytic activity (85–90% sulfur yield) was obtained when VOx/TiO2 was incorporated with other metals such as Fe, Cr and Mo. Reaction occurred via redox mechanism and the reoxidation of reduced vanadium was the rate-limiting step. A long-term deactivation observed during the reaction was due to slower reoxidation of reduced vanadium by oxygen than the reduction by H2S. Catalytic activities of VOx/SiO2, VOx/TiO2 and V–Fe–Cr–Mo–Ox/TiO2 were well correlated with their redox properties that were observed by TPR/TPO and XPS measurements.  相似文献   

18.
A honeycomb catalyst for the oxidation of endogenous SO2 from a coal-fired power-station flue-gas has been developed. The catalyst reached a SO2 to SO3 conversion of 60 vol.% after 200 h in operation at the pilot plant. When this catalyst is further treated for another 100 h at lab scale to complete its activation, a stable 80 vol.% conversion is obtained. The results have been used to design an industrial unit for flue-gas conditioning to improve the fly ash collection by the electrostatic precipitator in a 220 MW coal-fired power plant.  相似文献   

19.
采用浸渍法制备Fe/Al_2O_3催化剂,采用BET、XRD和穆斯堡尔谱等进行结构和性能表征。以自制Fe/Al_2O_3为催化剂,应用催化湿式过氧化氢氧化技术处理COD为6 742 mg·L-1的兰炭废水,通过建立正交实验确定最佳实验条件,结果表明,在p H=4、过氧化氢添加量9.6 m L、反应时间150 min和反应温度80℃条件下,兰炭废水COD去除率达66.30%。对催化氧化后的废水进行GC-MS分析,确定最终氧化产物主要为乙酸。表明自制Fe/Al_2O_3催化剂具有优良的催化效果,并使大分子难降解有机污染物分解为易生化的小分子污染物,甚至被完全分解矿化。  相似文献   

20.
刁斐  蒋明学  朱鸿志 《陶瓷》2011,(7):35-38
根据热力学原理对Si—C—N—H—O五元系统进行了平衡状态下的相稳定性计算,绘制了在1 073 K和1 223 K下的SiC、Si3N4、Si2N2O和SiO24个稳定相的稳定性与N2分压和H2O分压的关系图,即优势区域图,分析了其凝聚相的稳定区域。同时结合SEM显微结构分析氢气还原炉中Si3N4/SiC和Sialon/SiC制品抗H2O—H2—N2气氛的侵蚀性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号