首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 31 毫秒
1.
纳米氮化硅粉体的制备   总被引:1,自引:0,他引:1  
本文用碳热还原法制备了纳米氮化硅粉体,研究了纳米氮化硅颗粒的表面形貌及其电子自旋共振谱。  相似文献   

2.
氮化硅是优良的陶瓷材料,应用十分广泛。本文论述了激光诱导化学气相沉积法制备纳米氮化硅的工作原理,提出了减少游离硅的措施;采用双光束激发制备得到了超微非晶纳米氮化硅粉体。  相似文献   

3.
双光束激励制备纳米氮化硅粉体   总被引:4,自引:0,他引:4  
王锐  黄永攀  罗丽明  浦坦  李道火 《硅酸盐学报》2004,32(11):1425-1429
介绍了激光诱导化学气相沉积法制备纳米氮化硅的工艺原理。通过增加正交紫外光束激励NH3分解,提高气相中n(N)/n(Si)比,从而减少产物中游离硅的浓度,制备出粒径7~15nm的无团聚、理想化学剂量[n(N)/n(Si)=1.314]的非晶纳米氮化硅粉体。用透射电子显微镜观察了粉体形貌,并指出表面效应和量子尺寸效应导致粉体红外吸收光谱的蓝移和宽化以及Raman光谱的蓝移现象。  相似文献   

4.
刘玉鹤 《中国陶瓷》2008,44(1):23-25
为制备高固相含量氮化硅悬浮液,研究了不同分散剂(柠檬酸铵、四甲基氢氧化铵、聚丙烯酸铵和丙烯酸)对氮化硅粉体的表面改性作用。结果发现,柠檬酸铵、四甲基氢氧化铵、聚丙烯酸铵不能有效吸附于氮化硅粉体表面而改变粉体的表面特性;而丙烯酸聚合过程中链自由基的较高活性使聚丙烯酸分子链吸附于氮化硅颗粒表面,氮化硅粉体的等电点从pH≈4.3降低到pH≈21,通过这种表面改性方法提高了氮化硅粉体在水中的分散特,制备出了固相体积分数为50%的氮化硅悬浮液。这种表面改性方法不改变氮化硅粉体的化学组成,有利于制备氮化硅基陶瓷时化学成分及相组成的准确控制。  相似文献   

5.
本文研究了改性纳米氮化硅(Si3N4)陶瓷粉体在丁腈橡胶(NBR)油封中的应用性能。纳米氮化硅陶瓷粉体具有耐高温、化学稳定性好、耐磨损、导热性能好等优点,但纳米氮化硅粉体具有高的表面能,一  相似文献   

6.
纳米氮化硅对氯磺化聚乙烯橡胶耐磨性能的影响   总被引:2,自引:1,他引:1  
采用低相对分子质量氯磺化聚乙烯改性的纳米氮化硅填充氯磺化聚乙烯橡胶(CSM)制备纳米氮化硅/CSM复合材料,并对其性能进行研究.结果表明,低相对分子质量氯磺化聚乙烯与纳米氮化硅质量比为0.08时,改性效果较好,可有效地阻止纳米氮化硅的团聚;1份改性纳米氮化硅填充的CSM胶料耐磨性能比未加改性氮化硅的CSM胶料提高了1.8倍,其余物理性能变化不大.  相似文献   

7.
纳米氮化硅粉体的大分子改性剂表面修饰研究   总被引:2,自引:0,他引:2  
从分子设计的角度合成了一种新型的大分子表面改性剂(LMPB-g-MAH):采用溶液聚合法将极性单体马来酸酐(MAH)接枝到低分子量的聚丁二烯液体橡胶(LMPB)分子长链中,并用其对纳米氮化硅粉体进行表面修饰;对合成的大分子表面改性剂、改性前后的纳米氮化硅粉体,运用FT-IR、TEM、TGA、粒径分析、沉降实验等方法进行了表征.实验结果表明:马来酸酐已经接枝到低分子量的聚丁二烯液体橡胶分子长链中;当大分子表面改性剂的接枝率为9%~11%、用量为10%~12%、反应温度为65℃、反应时间为3 h时,表面修饰后的纳米氮化硅粉体颗粒粒径减小,有效阻止了纳米颗粒的团聚.  相似文献   

8.
在树脂中均匀分散纳米氮化硅粉体,经紫外光固化后,纳米复合材料的收缩率减小,拉伸强度提高,最佳氮化硅用量为体系总量的1%。  相似文献   

9.
氮化硅陶瓷是综合性能最好的结构陶瓷材料。纯度高、性能稳定且成本低廉的氮化硅粉体是影响氮化硅陶瓷性能和应用的关键。本文总结了目前常用的几种氮化硅粉体制备方法:硅粉氮化法、碳热还原法、自蔓延高温合成等,分析比较了几种方法的原理及特点,并对氮化硅粉体的未来发展进行了展望。  相似文献   

10.
邵恩颖  尤楠 《广州化工》2010,38(2):23-25
简述了氮化硅的结构、性质和粉体制备,综述了近年来氮化硅基复合材料的研究进展。  相似文献   

11.
Pi X  Chen X  Ma Y  Yang D 《Nanoscale》2011,3(11):4584-4588
Silicon nanocrystals (Si NCs) may be both unintentionally and intentionally doped with nitrogen (N) during their synthesis and processing. Since the importance of Si NCs largely originates from their remarkable optical properties, it is critical to understand the effect of N doping on the optical behavior of Si NCs. On the basis of theoretical calculations, we show that the doping of Si NCs with N most likely leads to the formation of paired interstitial N at the NC surface, which causes both the optical absorption and emission of Si NCs to redshift. But these redshifts are smaller than those induced by doubly bonded O at the NC surface. It is found that high radiative recombination rates can be reliably obtained for Si NCs with paired interstitial N at the NC surface. The current results not only help to understand the optical behavior of Si NCs synthesized and processed in N-containing environments, but also inspire intentional N doping as an additional means to control the optical properties of Si NCs.  相似文献   

12.
A Si quantum dot (QD)-embedded ZnO thin film is successfully fabricated on a p-type Si substrate using a ZnO/Si multilayer structure. Its optical transmittance is largely improved when increasing the annealing temperature, owing to the phase transformation from amorphous to nanocrystalline Si QDs embedded in the ZnO matrix. The sample annealed at 700°C exhibits not only high optical transmittance in the long-wavelength range but also better electrical properties including low resistivity, small turn-on voltage, and high rectification ratio. By using ZnO as the QDs’ matrix, the carrier transport is dominated by the multistep tunneling mechanism, the same as in a n-ZnO/p-Si heterojunction diode, which clearly differs from that using the traditional matrix materials. Hence, the carriers transport mainly in the ZnO matrix, not through the Si QDs. The unusual transport mechanism using ZnO as matrix promises the great potential for optoelectronic devices integrating Si QDs.  相似文献   

13.
A series of silicon-rich oxide (SRO) and erbium-doped SRO (SROEr) films imbedded with structural tunable silicon nanoclusters (Si NCs) have been fabricated using sputtering followed by post-annealing. The coalescence of Si NCs is found in the films with large Si excess. The energy transfer rate between Si NCs and Er3+ is enhanced, but the luminescence efficiencies of both Si NCs and Er3+ are reduced by the coalescent microstructures. Optimization of the microstructures of Si NCs is performed, and the preferential optical performance for both Si NCs and Er3+ could be achieved when Si NCs were separated in microstructures.  相似文献   

14.
Si quantum dots (Si QDs)/SiC multilayers were fabricated by annealing hydrogenated amorphous Si/SiC multilayers prepared in a plasma-enhanced chemical vapor deposition system. The thickness of amorphous Si layer was designed to be 4 nm, and the thickness of amorphous SiC layer was kept at 2 nm. Transmission electron microscopy observation revealed the formation of Si QDs after 900°C annealing. The optical properties of the Si QDs/SiC multilayers were studied, and the optical band gap deduced from the optical absorption coefficient result is 1.48 eV. Moreover, the p-i-n structure with n-a-Si/i-(Si QDs/SiC multilayers)/p-Si was fabricated, and the carrier transportation mechanism was investigated. The p-i-n structure was used in a solar cell device. The cell had the open circuit voltage of 532 mV and the power conversion efficiency (PCE) of 6.28%.

PACS

81.07.Ta; 78.67.Pt; 88.40.jj  相似文献   

15.
以氯化钐为起始原料,采用溶胶-凝胶法在玻璃和Si(100)基板上制备了Sm2O3光学薄膜,在300~800℃对薄膜进行1~3 h热处理.采用X射线衍射、原子力显微镜和紫外-可见自记式分光光度计等对薄膜的结晶取向、显微结构和光学性能进行了表征.结果表明:Sm2O3薄膜在玻璃基板和Si(100)基板上均表现出沿(311)晶面定向生长的特征;Si基板更有利于生长致密而且结晶良好的薄膜;所制备的薄膜对紫外线有强烈吸收作用,而对可见光有较好的透过作用,随着热处理温度的升高,薄膜结晶性变好,取向性增强,光吸收性能增强,薄膜的禁带宽度减小.  相似文献   

16.
The distribution characteristic and segregation behavior of metal impurities during directional solidification of Al-20Si, Al-30Si and Al-40Si alloys have been investigated. The morphologies of the alloys and impurity phases were observed by optical microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. The concentration profiles of representative metal impurities Al, Fe and Ti were measured by inductively coupled plasma optical emission spectrometry. The results indicate that the metal impurities segregate into the eutectic Al-Si melt during the growth of primary Si flakes and gradually segregate towards the top of each ingot during directional solidification. A concept of apparent segregation coefficient is proposed to characterize the segregation behavior of impurity elements. The apparent segregation coefficients of metal impurities decrease with increase in solidification temperature of the Al-Si alloys.  相似文献   

17.
The paper reports the results of the study of cell culture growth at the surface of porous silicon. They show that porous and poly(nano)crystalline Si offer significant advantages over bulk Si surfaces for cell adherence and viability: these materials do not require coating with substances such as polylysine to support cell growth; porous Si is light-addressable because of photoluminescence and photovoltaic effects noted [Unal and Bayliss, J. Appl. Phys. 80, 3532 (1996)], allowing the potential for optical data transfer and less susceptibility to interference from external electronic equipment; finally nanostructured coatings can be applied to most object shapes, giving flexibility in their application.  相似文献   

18.
Silicon-oxide incorporated amorphous hydrogenated diamond-like carbon films (SiOx–DLC, 1  x  1.5) containing up to 24 at.% of Si (H is excluded from the atomic percentage calculations reported here) were prepared using pulsed direct current plasma-enhanced chemical vapour deposition (DC-PECVD). Molecular structure, optical properties and mechanical properties of these films were assessed as a function of Si concentration. The spectroscopic results indicated two structural regimes. First, for Si contents up to ~ 13 at.%, SiOx–DLC is formed as a single phase with siloxane, O–Si–C2, bonding networks. Second, for films with Si concentrations greater than 13 at.%, SiOx–DLC with siloxane bonding and SiOx deposit simultaneously as segregated phases. The variations in mechanical properties and optical properties as a function of Si content are consistent with the above changes in the film composition.  相似文献   

19.
Silicon quantum dots (Si QDs) attract increasing interest nowadays due to their excellent optical and electronic properties. However, only a few optoelectronic organic molecules were reported as ligands of colloidal Si QDs. In this report, N-vinylcarbazole - a material widely used in the optoelectronics industry - was used for the modification of Si QDs as ligands. This hybrid nanomaterial exhibits different spectroscopic properties from either free ligands or Si QDs alone. Possible mechanisms were discussed. This type of new functional Si QDs may find application potentials in bioimaging, photovoltaic, or optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号