首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The domestic cat experiences circannual variations in ovarian activity and intrafollicular oocyte quality. One result is poor nuclear and cytoplasmic maturation during in vitro maturation (IVM) conducted during the annual non-breeding season (July through November). In an attempt to overcome this seasonal phenomenon immature oocytes were collected from July through November and cultured in a conventional IVM medium (IVM1) or in IVM1 supplemented with different FSH concentrations and antioxidant (ascorbic acid or cysteine). Nuclear status of oocytes was assessed after IVM or IVF. Embryo stage and blastocyst quality were evaluated after 7 days of in vitro culture. Although the addition of antioxidant alone had no effect, the presence of 10 microg FSH ml(-1) improved nuclear maturation (75.4+/-4.1% versus 48.7+/-8.8% in IVM1; P<0.05) and fertilization success (47.9+/-3.2% versus 35.0+/-5.1% in IVM1; P<0.05). Furthermore, developmental competence of fertilized oocytes was enhanced (P<0.05) only in the presence of ascorbic acid (30.6+/-6.7%) or cysteine (33.6+/-5.1%) compared with IVM1 (8.1+/-8.8%). Consequently, blastocyst yield (17% of total oocytes cultured) was highest when oocytes were matured in medium containing higher FSH concentration and antioxidants. The results of this study demonstrate that meiotic and developmental competences are inherent to the immature cat oocyte collected during the non-breeding season. However, appropriate mechanisms (perhaps seasonal variation in FSH receptors or lack of antioxidant capacity of the cumulus-oocyte complex) are inadequate during this period of gonadal quiescence. Regardless, this compromised oocyte function during the non-breeding season can be overridden by altering in vitro culture conditions to include supplemental FSH and antioxidant.  相似文献   

2.
Steroid hormones, such as progesterone, oestrogen, androgen and meiosis activating sterols, are secreted from cumulus cells that are stimulated by gonadotrophins during maturation of oocytes in vitro. These steroid hormones may be absorbed by mineral oil or paraffin oil; however, in vitro maturation of pig oocytes is commonly performed using medium covered by oil. In this study, high concentrations of progesterone, oestradiol and testosterone were detected in the culture medium after pig cumulus-oocyte complexes (COCs) were cultured with FSH and LH for 44 h in medium without an oil overlay. However, high concentrations of these steroid hormones were not detected in medium when COCs were cultured with the mineral oil overlay. When high concentrations of these steroid hormones were secreted by COCs, germinal vesicle breakdown (GVBD) and the activation of p34(cdc2) kinase and mitogen-activated protein (MAP) kinase in oocytes occurred earlier in comparison with oocytes cultured in medium covered with mineral oil. Moreover, a decrease in p34(cdc2) kinase activity during meiotic progression beyond metaphase I was observed in oocytes cultured in conditions under which high concentrations of steroid hormones were secreted by COCs. In addition, the rate of development to the blastocyst stage after IVF was higher in oocytes matured in medium without an oil overlay. These adverse effects of oil may be explained by absorption by the oil of cumulus-secreted steroids or by the release of toxic compounds into the medium.  相似文献   

3.
We examined the effects of naturally occurring mastitis on bovine oocyte developmental competence in vitro. Specifically, we investigated the effects of intramammary infection on the ovarian pool of oocytes (i.e., follicle-enclosed oocytes) and their ability to undergo in vitro maturation, fertilization, and further development to the blastocyst stage. Culled Holstein cows (n = 50) from 9 commercial dairy farms in Israel were allotted to 3 groups according to somatic cell count (SCC) records of the last 3 monthly milk tests as well as of quarter samples collected before slaughter: (1) low SCC (n = 7), (2) medium SCC (n = 16), or (3) high SCC (n = 27). Means of SCC values differed among low-, medium-, and high-SCC groups: 148,000, 311,000 and 1,813,000 cell/mL milk, respectively. Milk yield and days in milk did not differ among the 3 groups. Bacterial isolates included coagulase-negative staphylococci, Escherichia coli, Streptococcus dysgalactiae, or no bacteria found. Ovaries were collected at the abattoir and brought to the laboratory. Cumulus oocyte complexes were recovered separately from each cow and subjected individually to in vitro maturation and fertilization, followed by 8 d in culture. The number of aspirated oocytes did not differ among groups, with a range of 17 to 21 oocytes per cow. The proportion of oocytes that cleaved into 2- to 4-cell-stage embryos (86.1 ± 3.4%) did not differ among groups. In contrast, mean percentages of embryos developed to the blastocyst stage on d 7 and 8 after fertilization were less in both medium- and-high SCC groups than in the low-SCC group (5.6 ± 2.3 and 4.1 ± 1.8 vs. 18.1 ± 4.6%, respectively). Additional analysis indicated that cleavage and blastocyst-formation rates did not differ among the bacterial types in the low-, medium-, and high-SCC groups. These are the first results to demonstrate that naturally occurring mastitis disrupts the developmental competence of the ovarian pool of oocytes, (i.e., oocytes at the germinal vesicle stage). The disruption was associated with elevation of SCC rather than bacterial type. The results may provide a partial explanation for the low fertility of cows that have contracted mastitic pathogens before insemination.  相似文献   

4.
Combinations of genetic, environmental, and management factors are suspected to explain the loss in fertility observed for over 20 years in dairy cows. In some cases, IVF is used. When compared with in vivo embryo production, IVF resulted in low success rates until the FSH coasting process (FSH starvation after superstimulation) was introduced in 2002. Increased competence associated with FSH withdrawal of aspirated oocyte for in vitro maturation and IVF has not been optimized nor explained yet. The goal here was to determine and characterize the optimal oocyte competence acquisition window during the coasting period by determining blastocyst rates and follicular cohort development. Commercial milking cycling cows (n=6) were stimulated with 3 days of FSH (6×40?mg NIH Folltropin-V given at 12?h intervals) followed by a coasting period of 20, 44, 68, or 92?h. Each animal was exposed to the four conditions and served as its own control. At the scheduled time, transvaginal aspirations of immature oocytes were performed followed by IVF of half the oocytes. The outcomes were as follows: i) FSH coasting was optimal at a defined period: between 44 and 68?h of coasting; ii) The best estimated coasting duration was ~54±7?h; iii) Under these conditions, the best statistical blastocyst rate estimation was ~70%; iv) Between 44 and 68?h of coasting, follicle size group proportions were similar; v) Follicle diameter was not linearly associated with competence. In conclusion, coasting duration is critical to harvest the oocytes at the right moment of follicular differentiation.  相似文献   

5.
Meiotic maturation in mammalian oocytes is a complex process which involves extensive rearrangement of microtubules, actin filaments and chromosomes. Since cytoskeletal elements are sensitive to disruption by heat shock, a series of experiments were performed to determine whether physiologically relevant heat shock disrupts the progression of the oocyte through meiosis, fertilization and zygote formation. Cumulus-oocyte complexes were cultured at 38.5, 40.0 or 41.0 degrees C for the first 12 h of maturation. Incubation during the last 10 h of maturation and 18 h after fertilization was at 38.5 degrees C and in 5% (v/v) CO2 for both treatments. Examination of the cytoskeleton and the chromosome organization in matured oocytes revealed that oocytes matured at 38.5 degrees C were mostly at metaphase II (MII) stage, while the majority of heat-shocked oocytes were blocked at the first metaphase (MI), first anaphase or first telophase stages. A subset of heat-shocked oocytes possessed misshapen MI spindles with disorganized microtubules and unaligned chromosomes. A higher percentage of TUNEL-positive oocytes was noted for oocytes matured at 41.0 degrees C. Addition of 50 nmol/l sphingosine 1-phosphate to maturation medium blocked the effect of heat shock on progression through meiosis and apoptosis and increased the proportion of oocytes matured at 41.0 degrees C that were at MII. Following insemination, a high percentage of heat-shocked oocytes were unfertilized, while the majority of the control zygotes were fertilized and had two visible pronuclei. In conclusion, heat shock disrupts nuclear maturation and induces apoptosis. These alterations are likely to be involved in the mechanism underlying heat-shock-induced disruption of oocyte capacity for fertilization and subsequent development.  相似文献   

6.
The objectives of this study were to manipulate metabolism of glucose through glycolysis and the pentose phosphate pathway (PPP) in porcine oocytes during in vitro maturation, and determine the effects of this manipulation on meiotic progression, intracellular glutathione (GSX) concentrations and embryonic development. Cumulus-oocyte complexes isolated from abattoir ovaries were matured (40-44 h) in Purdue Porcine Medium for maturation alone (control) or supplemented with pyrroline-5 carboxylate (PC, 0.1 microM; PPP stimulator), diphenyleneiodonium (DPI, 0.1 microM; PPP inhibitor), dinitrophenol (DNP, 10 microM; glycolytic stimulator), hexametaphosphate (HMP, 100 microM; glycolytic inhibitor), PC + HMP or DNP + DPI. At the conclusion of in vitro maturation, cumulus cells were removed and oocytes were randomly allocated for analysis of GSX, metabolism and nuclear maturation, or in vitro fertilization and embryo culture. Both DPI and DNP + DPI decreased (P < or = 0.05) the activity of glycolysis and the PPP, increased (P < or = 0.05) the percentage of immature oocytes, and decreased (P < or = 0.05) the proportion of mature oocytes compared with control oocytes and oocytes from the other treatments. Embryonic development (cleavage and blastocyst stage) and the intracellular content of GSX were also decreased (P < or = 0.05) following exposure to DPI or DNP + DPI compared with control oocytes and oocytes from the other treatments. Oocyte metabolism, nuclear maturation, GSX content and embryonic development were unaffected (P > 0.05) following exposure to PC, DNP, HMP or PC + HMP. Our results suggest that metabolism of glucose through the PPP and/or glycolysis plays a key role in the control of nuclear and cytoplasmic maturation of porcine oocytes in vitro.  相似文献   

7.
Complete maturation of oocytes is essential for the developmental competence of embryos. Any interventions in the growth phase of the oocyte and the follicle in the ovary will affect oocyte maturation, fertilization and subsequent embryo development. Oocyte size is associated with maturation and embryo development in most species examined and this may indicate that a certain size is necessary to initiate the molecular cascade of normal nuclear and cytoplasmic maturation. The minimum size of follicle required for developmental competence in humans is 5-7 mm in diameter. Maturation in vitro can be accomplished in humans, but is associated with a loss of developmental competence unless the oocyte is near completion of its preovulatory growth phase. This loss of developmental competence is associated with the absence of specific proteins in oocytes cultured to metaphase II in vitro. The composition of culture medium used successfully for maturation of human oocytes is surprisingly similar to that originally developed for maturation of oocytes in follicle culture in vitro. The presence of follicle support cells in culture is necessary for the gonadotrophin-mediated response required to mature oocytes in vitro. Gonadotrophin concentration and the sequence of FSH and FSH-LH exposure may be important for human oocytes, particularly those not exposed to the gonadotrophin surge in vivo. More research is needed to describe the molecular and cellular events, the presence of checkpoints and the role of gene expression, translation and protein uptake on completing oocyte maturation in vitro and in vivo. In the meantime, there are very clear applications for maturing oocytes in human reproductive medicine and the success rates achieved in some of these special applications are clinically valuable.  相似文献   

8.
In vitro maturation of oocytes has enormous potential in assisted reproductive technology, but its use has been limited due to insufficient knowledge of oocyte physiology during this dynamic period and lack of an adequate maturation system. The aim of this study was to characterize the metabolic profiles of three groups of oocytes throughout maturation: cumulus-oocyte complexes (COCs), denuded oocytes, and denuded oocytes co-cultured with cumulus cells. Mouse oocytes were collected from 28-day-old unstimulated females and matured in a defined medium. Oocytes were matured individually and transferred into fresh 0.5 microl drops of medium at 4 h intervals until 16 h. Ultramicrofluorimetry was used to quantitate carbohydrate consumption from and metabolite release into the medium. Glucose consumption and lactate production of COCs increased (P < 0.001) over the maturation interval (0-16 h). Glucose consumption by COCs that subsequently fertilized was higher between 8-12 h of maturation than by COCs that did not fertilize (38 versus 29 pmol/COC per h, respectively; P < 0.01). Lactate production by COCs that subsequently fertilized was higher between 8-16 h of maturation, than by oocytes that did not fertilize (8-12 h, 66 versus 46 pmol/COC per h, P < 0.01; 12-16 h, 56 versus 40 pmol/COC per h, respectively; P < 0.05). These data indicate that the final hours of maturation may hold a unique marker of oocyte competence, as during this time fertilizable COCs take up more glucose and produce more lactate than those not subsequently fertilized.  相似文献   

9.
In ovarian follicles, cumulus cells provide the oocyte with small molecules that permit growth and control maturation. These nutrients reach the germinal cell through gap junction channels, which are present between the cumulus cells and the oocyte, and between the cumulus cells. In this study the involvement of intercellular communication mediated by gap junction channels on oocyte maturation of in vitro cultured bovine cumulus-oocyte complexes (COCs) was investigated. The stages of oocyte maturation were determined by Hoechst 33342 staining, which showed that 90% of COCs placed in the maturation medium for 24 h progress to the metaphase II stage. Bovine COC gap junction communication was disrupted initially using n-alkanols, which inhibit any passage through gap junctions. In the presence of 1-heptanol (3 mmol l(-1)) or octanol (3.0 mmol l(-1) and 0.3 mmol l(-1)), only 29% of the COCs reached metaphase II. Removal of the uncoupling agent was associated with restoration of oocyte maturation, indicating that treatment with n-alkanols was neither cytotoxic nor irreversible. Concentrations of connexin 43 (Cx43), the major gap junction protein expressed in the COCs, were decreased specifically using a recombinant adenovirus expressing the antisense Cx43 cDNA (Ad-asCx43). The efficacy of adenoviral infection was > 95% in cumulus cells evaluated after infection with recombinant adenoviruses expressing the green fluorescence protein. RT-PCR performed on total RNA isolated from Ad-asCx43-infected COCs showed that the rat Cx43 cDNA was transcribed. Western blot analysis revealed a three-fold decrease in Cx43 expression in COCs expressing the antisense RNA for Cx43. Injection of cumulus cells with Lucifer yellow demonstrated further that the resulting lower amount of Cx43 in infected COCs is associated with a two-fold decrease in the extent of coupling between cumulus cells. In addition, oocyte maturation was decreased by 50% in the infected COC cultures. These results indicate that Cx43-mediated communication between cumulus cells plays a crucial role in maturation of bovine oocytes.  相似文献   

10.
11.
Follicle dynamics and oocyte viability in Holstein primiparous and multiparous cows and the relationships between fertility and the biochemical and physical properties of oocyte membranes with season were examined. The conception rates of primiparous (n = 70 885) and multiparous (n = 143 490) cows differed, peaking in the winter and decreasing in the summer. The number of follicles 3-8 mm in diameter per ovary was higher in winter (19.6) compared with summer (12.0). However, in winter the percentage of ovaries with fewer than ten follicles per ovary was 16%, in contrast to 50% in summer. After aspiration of follicles, 7.5 oocytes per ovary were found in winter and 5.0 oocytes per ovary in summer. Cleavage to the two- to four-cell stage after chemical activation was greater in winter than in summer; this was enhanced at the morula stage and embryo development to the blastocyst stage was significantly higher in winter than in summer. Determination of the lipid phase transition in oocyte membranes revealed a shift of 6 degrees C between summer and winter. Fatty acid composition of phospholipids from follicular fluid, granulosa cells and oocytes indicated that there was a higher percentage of saturated fatty acids during the summer and that the percentages of mono-unsaturated and polyunsaturated fatty acids were higher in oocytes and granulosa cells during the winter. Oocytes and granulosa cells had similar fatty acid compositions, in contrast to follicular fluid. These results may explain the differences in the ability of oocytes to develop to the blastocyst stage at different seasons. Thus, temperature changes may lead to changes in membrane properties, which, in turn, can influence oocyte function and fertility.  相似文献   

12.
The study was designed to test the hypothesis that aging in cattle is associated with reduced developmental competence of oocytes. The hypothesis was tested by comparing embryo production and pregnancy rates between 13- to 16-year-old cows (n = 6 in Year 1 and n = 9 in Year 2) and their 3- to 6-year-old young daughters (n = 8 in Year 1 and n = 9 in Year 2) after superovulation and transfer of embryos into an unrelated group of young recipients. Embryos were transferred into 2- to 5-year-old recipient cows (n = 99) as singletons (n = 45) or in pairs (n = 54 pairs). Embryo survival in recipients was determined by ultrasonography and by the number of calves born. Between old versus young cows, the number of ovulations (31 +/- 4 vs 38 +/- 3; P = 0.2) and the number of corpora lutea (25 +/- 3 vs 29 +/- 2; P = 0.3) did not differ, but fewer (P = 0.04) embryos were recovered from old cows (6 +/- 2) than their daughters (12 +/- 2). A higher proportion (P < 0.0001) of unfertilized oocytes/uncleaved zygotes were recovered from old cows (222/312, 71%) than their daughters (119/316, 38%). Among the embryos recovered, the proportion of International Embryo Transfer Society Grades 1-2 embryos was similar (P = 0.9) between old (59/90, 66%) and young cows (130/194, 67%). The survival of embryos after transfer into recipients, and the proportion of calves born were also similar between old and young cows. In conclusion, recovery of fewer embryos and a greater proportion of unfertilized oocytes/uncleaved zygotes suggest reduced developmental competence of oocytes from old cows, but there was no difference between age groups in embryo survival after the morula/blastocyst stage.  相似文献   

13.
Using a well-in-drop (WID) oocyte/embryo culture system that allows identification of follicular origin, we have investigated the effects of granulosa cells (GCs) apoptosis, follicle size, cumulus-oocyte complexes (COCs) morphology, and cumulus expansion on the developmental competence of goat oocytes matured and cultured individually following parthenogenetic activation. The WID system supported oocyte maturation and embryo development to a level similar to the conventional group system. The majority of goat oocytes acquired competence for development up to the 8-16 cell stage in follicles larger than 2 mm, but did not gain the ability to form morula/blastocyst (M/Bs) until follicles larger than 3 mm in diameter. The extent of atresia affected M/Bs formation. This effect varied according to the follicle size. Cumulus expansion increased with follicle size and decreased with increasing incidence of GCs apoptosis. Oocyte developmental potential was also correlated with cumulus expansion. Regardless of the degree of follicle atresia, 73-84% of the floating cells in the follicular fluid (FF) underwent apoptosis. Correlation between floating cell density in FF and oocyte developmental potency suggests the possibility to use the floating cell density as a simple and non-invasive marker for oocyte quality. It is concluded that the developmental potential of an oocyte is determined by multifactor interactions, and multiple factors must be considered together to accurately predict the quality of an oocyte.  相似文献   

14.
Our objective was to improve the developmental ability of oocytes in porcine primordial follicles xenografted to nude mice, by treating the host mice with gonadotrophins to accelerate follicular growth. Ovarian tissues from 20-day-old piglets, in which most of the follicles were primordial, were transplanted under the kidney capsules of ovariectomized nude mice. Gonadotrophin treatments were commenced around 60 days after vaginal cornification in the mice. Ovarian grafts were obtained 2 or 3 days after treatment with equine chorionic gonadotrophin (eCG-2 and eCG-3 groups), after porcine FSH infusion for 7 or 14 days, or after infusion of porcine FSH for 14 days with a single injection of estradiol antiserum (FSH-7, FSH-14 and FSH-14EA groups, respectively). Gonadotrophin treatments accelerated follicular growth within the xenografts compared with that in control mice given no gonadotrophins, consistent with higher (P < 0.05) circulating inhibin levels in the gonadotrophin-treated mice. In contrast, circulating mouse FSH levels were significantly (P < 0.05) depressed. We recovered large numbers of full-sized oocytes with meiotic competence to the mature stage from the eCG-3, FSH-7, and FSH-14EA, unlike in the control group. Moreover, 56% of matured oocytes with the first polar body (n = 39) were fertilized in vitro in the FSH-14EA group. After in vitro fertilization and subsequent culture for 7 days, one blastocyst was obtained from each of the eCG-3, FSH-7 and, FSH-14EA groups, whereas no blastocysts appeared in the other groups. Exogenous gonadotrophins--not mouse FSH--stimulated the growing follicles that had developed from the primordial follicles in the xenografts: the effects were incomplete but improved to some extent the meiotic and developmental abilities of the oocytes.  相似文献   

15.
This study was conducted to evaluate the effect of initial cumulus morphology (expanded or compact) and duration of in vitro maturation (24, 30 or 42 h) on the developmental competence of equine oocytes after intracytoplasmic sperm injection (ICSI). The effect of manipulation temperature (room temperature vs 37 degrees C) at the time of ICSI and concentration of glucose (0.55 vs 5.5 mM) during embryo culture was also investigated. The nuclear maturation rates of expanded (Ex) oocytes were significantly (P < 0.001) higher than those of compact (Cp) oocytes at all maturation times (61-72 vs 23-25% respectively). Forty-eight hours after ICSI of mature Ex oocytes, the rate of cleavage with normal nuclei was significantly (P < 0.05) higher for oocytes matured for 24 h than for those matured for 30 or 42 h (73 vs 57-59% respectively). For Cp oocytes, the morphologic cleavage rates for oocytes matured for 30 h were significantly higher (P < 0.05) than for those matured for 24 or 42 h (86 vs 55-61% respectively). The overall proportion of embryos having more than four normal nuclei at 48 h culture was significantly higher (P < 0.05) for Cp than for Ex oocytes. Manipulation temperature did not affect development of embryos from Ex or Cp oocytes at 96 h after ICSI. Culture in high-glucose medium significantly increased morphologic cleavage of Cp, but not Ex, oocytes (P < 0.05). Embryos from Cp oocytes had a significantly higher average nucleus number after 96-h culture than did embryos from Ex oocytes. These data indicate that developmental competence differs between Ex and Cp equine oocytes, and is differentially affected by the duration of maturation and by composition of embryo culture media.  相似文献   

16.
High concentrations of urea in reproductive tract fluids are detrimental to bovine reproduction. Therefore, in experiment 1, the effect of 6 mM urea on nuclear maturation of cumulus-oocyte-complexes (COC) collected from abattoir ovaries was studied. After 4, 8, 12, 16, 20, and 24 h of in vitro maturation, the nuclear stages of samples of the COC were determined. During the first 8 h of maturation, germinal vesicle breakdown and chromosome condensation, resulting in the metaphase I stage, occurred at higher rates in the presence of urea. Segregation of the chromatids and extrusion of the polar body seemed to be impaired in the presence of urea, resulting in a higher percentage of oocytes arrested in metaphase I or telophase, and a lower percentage of oocytes in metaphase II after 24 h of maturation. Overall, nuclear progression of COC matured in the presence of urea differed from COC matured in control medium. In experiment 2, COC were matured for 24 h either in the presence or absence of 6 mM urea followed by in vitro fertilization and culture. After fertilization, a sample of the COC was fixed and stained to determine the fertilization rate. The cleavage rate was determined 3 d after start of maturation, and the stage of embryonic development was recorded 7 and 9 d after start of maturation. Based on cultured oocytes, urea in the maturation medium decreased the subsequent percentage of fertilization, cleavage, and development on d 7 and 9 (43.2, 56.1, 14.8, and 18.2%, respectively for urea vs. 64.1, 68.8, 22.4, and 23.9%, respectively for the control group). Embryonic development as a percentage of cleaved oocytes was not significantly affected by urea. Therefore, negative effects of urea were evident primarily during oocyte maturation and fertilization.  相似文献   

17.
We previously reported that when midkine (MK), a heparin-binding growth differentiation factor was used in in vitro maturation (IVM) culture of bovine cumulus-enclosed oocytes (CEOs), their developmental competence to the blastocyst stage after in vitro fertilization (IVF) was enhanced and the effect of MK might be mediated by its action upon mural granulosa cells and cumulus cells that closely surround the oocyte. In the present study, when denuded oocytes (DOs) were matured in IVM medium with or without MK (200 ng/ml) in the presence or absence of isolated cumulus cell masses and subjected to IVF, the enhancing effects of MK on the developmental competence of DOs to the blastocyst stage after IVF were exerted only in the presence of cumulus cells. In addition, we prepared the conditioned media of granulosa cells cultured with or without 200 ng MK/ml (CMMK+ or CMMK- respectively) and examined their effects on the IVM of DOs in terms of their developmental competence to the blastocyst stage after IVF. The supplementation of CMMK+ into IVM medium at 40% (v/v) significantly enhanced the blastocyst development compared with the no additive control and the CMMK- supplemented groups. Furthermore, the effects of MK during IVM of bovine CEOs on the cumulus cell apoptosis were investigated. CEOs were cultured up to 24 h in IVM medium without (control) or with 200 ng MK/ml. The genomic DNA was extracted from CEOs at 0, 6, 12, 18 and 24 h of IVM and subjected to ligation-mediated PCR (LM-PCR) to detect the apoptotic internucleosomal DNA fragmentation. DNA fragmentation was scarcely detected at the start of IVM, whereas it increased time-dependently as the IVM culture progressed. The degree of the fragmentation was significantly lower in the MK-treatment group compared with the control group at 18 and 24 h of IVM. The apoptosis-suppressing effect of MK on cumulus cells was further confirmed in situ by using TUNEL on CEOs. In conclusion, data from the present study further confirmed that MK enhances the developmental competence of bovine oocytes via cumulus and granulosa cells. It was also demonstrated that MK suppresses the apoptosis that occurs in cumulus cells during the period of IVM of bovine CEOs. The putative soluble factor(s) from cumulus cells was suggested from the experiment using CMMK+ . MK may promote the production of such factors in part by its anti-apoptotic effects on cumulus cells.  相似文献   

18.
The aim of this study was to investigate whether apoptosis occurs in cumulus cells during in vitro maturation (IVM) of bovine cumulus-enclosed oocytes (CEOs). The bovine CEOs obtained from ovaries from an abattoir were cultured for 24 h in IVM medium in the presence or absence of 10% (v/v) fetal bovine serum. The developmental competence of enclosed oocytes, as assessed by the development of the blastocyst after IVF, was significantly higher in the serum-treated group than in the control group. The morphological features of apoptosis that were analysed by orcein staining were hardly detectable in the cumulus cells at the start (0 h) of IVM, but were evident at the end (24 h) of IVM both in the control and serum-treated groups. Genomic DNA was extracted from CEOs at 0, 6, 12, 18 and 24 h of IVM and subjected to ligation-mediated PCR (LM-PCR) to detect apoptotic internucleosomal DNA fragmentation. DNA fragmentation was hardly detectable at the start of IVM, but increased in a time-dependent manner as the IVM culture proceeded. DNA fragmentation was not observed in the oocytes, indicating that fragmentation occurs in cumulus cells. The degree of fragmentation was lower in the serum-treated group compared with the control group. The LM-PCR analysis of DNA extracted from CEOs at 24 h of IVM, in which the DNA had been pretreated with Klenow enzyme or T4 DNA polymerase, revealed that the characteristic forms of the DNA ends generated during cumulus cell apoptosis were mainly 3'-overhangs and blunt ends. In conclusion, the results of the present study demonstrate that cumulus cells in bovine CEOs spontaneously undergo apoptosis during IVM. The degree of apoptosis may be correlated with the developmental competence of the enclosed oocytes.  相似文献   

19.
20.
The effects of the dibutyryl cyclic adenosine 3',5'-monophosphate, calmodulin antagonist W7, and ovarian glycosaminoglycans on polar body extrusion, "nucleus" formation, and segmentation of bovine oocytes were examined in vitro. Dibutyryl cyclic adenosine 3',5'-monophosphate (100 microM) accelerated the extrusion of first polar body; however, W7 (20 microM) suppressed the formation of the first polar body. Spontaneous "nucleus" formation resembling pronucleus formation in oocytes was accelerated in the presence of dibutyryl cyclic adenosine 3',5'-monophosphate at concentrations of greater than 20 microM. The spontaneous segmentation, which is a degenerative change, was suppressed in the presence of bovine follicular fluid-glycosaminoglycans at concentrations of 250 micrograms/ml or greater. These results may indicate that maturation, activation, and degeneration of bovine oocytes in culture are modulated by dibutyryl cyclic adenosine 3',5'-monophosphate, W7, and ovarian glycosaminoglycans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号