首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Nanosized solid superacids SO4 2−/TiO2 and S2O8 2−/TiO2, as well as MCM-41-supported SO4 2−/ZrO2, were prepared. Their structures, acidities, and catalytic activities were investigated and compared using XRD, N2 adsorption-desorption, and in situ FTIR-pyridine adsorption, as well as an evaluation reaction with pseudoionone cyclization. The results showed that SO4 2−/TiO2 and S2O8 2−/TiO2 possess not only nanosized particles with diameters < 7.0 nm, a BET surface greater than 140 cm2/g and relatively regular mesostructures with pores around 4.0 nm, but also a pure anatase phase and strong acidity. Different from the Lewis acid nature of SO4 2−/ZrO2/MCM-41, SO4 2−/TiO2 and S2O8 2−/TiO2 exhibit mainly Bronsted acidities. The strongest Bronsted acid sites were produced on SO4 2−/TiO2 promoted with H2SO4, while Lewis acid sites on S2O8 2−/TiO2 even stronger than those on SO4 2−/ZrO2/MCM-41 were generated when persulfate solution was used as sulfating agent. Because of their distinct acid natures, SO4 2−/TiO2 and S2O8 2−/TiO2 exhibited catalytic activities for the cyclization of pseudoionone that were much higher than that of SO4 2−/ZrO2/MCM-41. It can be concluded that the existence of more Br?nsted acid sites was favorable for proton participation in the cyclization reaction. Translated from Journal of Chemical Engineering of Chinese Universities, 2006, 20(2): 239–244 [译自: 高校化学工程学报]  相似文献   

2.
The nature of the Keggin ions of tungstophosphoric acid interacting with Ce0.5Zr0.5O2 solid solution has been investigated. The vibrational study shows additional IR features at 1051 and 957 cm−1 which are correlated to the primary Keggin anions interacting with Lewis sites involving Ce4+ and Zr4+ ions, and thus affecting the P–O and W=Oterminal bonds. The IR study indicates the formation of interfacial Ce4+–O–W and Zr4+–O–W bonds. The chemisorbed Keggin molecular layers on Ce0.5Zr0.5O2 show activity towards conversion of acetophenone to styrene by Meerwein–Ponndorf–Verley reduction followed by dehydration. The activity is correlated with the relative intensities of IR peaks at 1051 and 957 cm−1 of the perturbed Keggin molecular layers.  相似文献   

3.
NiO/Al2O3–TiO2/WO3 catalysts for acid catalysis were prepared by the addition of Al2O3 and the modification with WO3. The strong acid sites were formed through the bonding between dispersed WO3 and TiO2. The larger the dispersed WO3 amount, the higher both the acidity and catalytic activity. The addition of Al2O3 up to 5 mol% enhanced acidity and catalytic activity of NiO/Al2O3–TiO2/WO3 gradually due to the interaction between Al2O3 and TiO2 and consequent formation of Al–O–Ti bond. The presence of NiO may attract reactants and enhance the local concentration of reactants near acid sites and consequently increase catalytic activity.  相似文献   

4.
Activity and selectivity of mono- and bimetallic catalysts containing nano-particles of gold stabilized by different supports are compared in dimethyldisulfide removal from air at 150–320 °C. TiO2-supported Au and Au–Pd samples demonstrate stable and efficient DMDS removal at temperature as low as 155 °C, with formation of the two products: SO2 and elemental S. On the contrary, no formation of elemental S is detected in the case of Au, Au–Rh, and Au–Pd catalysts supported on HZSM-5, H-beta, or MCM-41. The most active Au–Rh/HZSM-5 catalyst demonstrates an efficient DMDS removal at 290 °C, with quantitative DMDS-to-SO2 oxidation. Characterization of catalysts with TPR, XRD, and (XANES + EXAFS) confirms a high dispersion of the metallic phases in all catalysts under study. Specific interaction between nano-particles of gold and titanium dioxide surface could be responsible for the unusual catalytic behavior of Au/TiO2 samples, as distinct from Au/zeolitic systems.  相似文献   

5.
A series of catalysts, NiSO4/TiO2–ZrO2 having different TiO2–ZrO2 composition, for acid catalysis was prepared by the impregnation method using an aqueous solution of nickel sulfate. The addition of TiO2 to ZrO2 improved the surface area of the catalyst and enhanced its acidity remarkably because of the formation of new acid sites through the charge imbalance of Ti–O–Zr bonding. The binary oxide, TiO2–ZrO2 calcined above 600 °C resulted in the formation of crystalline orthorhombic phase of ZrTiO4. Therefore, NiSO4/TiO2–ZrO2 calcined at 500 °C exhibited a maximum catalytic activity for acid catalysis, and then the catalytic activity decreased with the calcination temperature. The correlation between catalytic activity and acidity held for both reaction, 2-propanol dehydration and cumene dealkylation. NiSO4 supported on 50TiO2–50ZrO2 (TiO2/ZrO2 ratio = 1) among TiO2–ZrO2 binary oxides exhibited the highest catalytic activity for acid catalysis.  相似文献   

6.
A series of catalysts, NiSO4/Al2O3–TiO2, for acid catalysis was prepared by the impregnation method, where support, Al2O3–TiO2 was prepared by the coprecipitation method using a mixed aqueous solution of titanium tetrachloride and aluminum nitrate solution followed by adding an aqueous ammonia solution. The addition of nickel sulfate (or Al2O3) to TiO2 shifted the phase transition of TiO2 from amorphous to anatase to higher temperature because of the interaction between nickel sulfate (or Al2O3) and TiO2. 15-NiSO4/5-Al2O3–TiO2 containing 15 wt% NiSO4 and 5 mol% Al2O3, and calcined at 400°C exhibited maximum catalytic activities for both reactions, 2-propanol dehydration and cumene dealkylation. The catalytic activities for both reactions were correlated with the acidity of catalysts measured by the ammonia chemisorption method. The charge transfer from Ti atoms to the neighboring Al atoms strengthens the Al–O bond between Al and the surface sulfate species. The addition of Al2O3 up to 5 mol% enhanced the acidity, thermal property, and catalytic activities of NiSO4/Al2O3–TiO2 gradually due to the interaction between Al2O3 and TiO2 and consequent formation of Al–O–Ti bond.  相似文献   

7.
Methyl esters (biodiesel) were produced by the transesterification of cottonseed oil with methanol in the presence of solid acids as heterogeneous catalysts. The solid acids were prepared by mounting H2SO4 on TiO2 · nH2O and Zr(OH)4, respectively, followed by calcining at 823K. TiO2-SO4 2− and ZrO2-SO4 2− showed high activity for the transesterification. The yield of methyl esters was over 90% under the conditions of 230°C, methanol/oil mole ratio of 12:1, reaction time 8 h and catalyst amount (catalyst/oil) of 2% (w). The solid acid catalysts showed more better adaptability than solid base catalysts when the oil has high acidity. IR spectral analysis of absorbed pyridine on the samples showed that there were Lewis and Br?nsted acid sites on the catalysts. Translated from The Chinese Journal of Process Engineering, 2006, 6(4): 571–575 [译自: 过程工程学报]  相似文献   

8.
Co–BaCO3 catalysts exhibited high catalytic performance for oxidative dehydrogenation of ethane (ODE) using CO2 as oxidant. The maximal formation rate of C2H4 was 0.264 mmol · min−1 · (g · cat.)−1 (48.0% C2H6 conversion, 92.2% C2H4 selectivity, 44.3% C2H4 yield) on 7 wt% Co–BaCO3 catalyst at 650 °C and 6000 ml. (g · cat.)−1. h−1. Co–BaCO3 catalysts were comparatively characterized by XRF, N2 isotherm adsorption-desorption, XRD, H2-TPR and LRs. It was found that Co4+–O species were active sites on these catalysts in ODE with CO2. The redox cycle of Co–O species played an important role on the catalytic performance of Co–BaCO3 catalysts. On the other hand, the co-operation of BaCO3 and BaCoO3 was considered to be one of possible reasons for the high catalytic activity of these catalysts.  相似文献   

9.
Some metal oxides modified with sulfate ions form highly acidic or superacidic catalysts. SO2−4/M x O y solid superacid catalysts, play a vital role in more and more fields such as organic synthesis, fine chemicals, pharmaceuticals, and means for strengthening environmental safeguards. This review highlights the recent development of solid superacid catalysts based on SO2−4/M x O y , including synthesis method, characterization of acid sites and acid strength, and applications.  相似文献   

10.
New solid acid catalysts, consisting of heteropoly acid (HPA) H3PW12O40 (PW) supported on a mesoporous pure-silica molecular sieve MCM-41, have been prepared and characterized by nitrogen physisorption, X-ray diffraction, FT-IR, and31P magic angle spinning NMR. The PW/MCM-41 compositions with PW loadings from 10 to 50 wt% have 30 Å uniformly-sized mesopores. HPA retains the Keggin structure on the MCM-41 surface and forms finely dispersed HPA species. No HPA crystal phase is developed even at HPA loadings as high as 50 wt%. PW/MCM-41 exhibits higher catalytic activity than H2SO4 or bulk PW in liquid-phase alkylation of 4-t-butylphenol (TBP) by isobutene and styrene. In the alkylation of TBP by styrene, PW/MCM-41 shows a size selectivity compared to bulk PW and PW/SiO2, providing higher yields of a 2-(1-phenylethyl)-4-t-butylphenol, at the expense of the more bulky 2,6-bis-(1-phenylethyl)-4-t-butylphenol. The PW/MCM-41 compositions, having strong acid sites and a regular mesoporous system, are promising catalysts for the acid-type conversion and formation of organic compounds of large molecular size.  相似文献   

11.
Different samples of metal-incorporated MCM-41 were prepared and used as catalysts in Friedel–Craft’s benzylation of benzene. The catalytic performance was evaluated by off-line GC analysis. Fe-MCM-41 exhibited excellent activity, the sample with Si/Fe ratio = 10 showed 90% conversion with 95% selectivity towards diphenylmethane within a few minutes. Generally, the activity per Fe-site was an order of magnitude higher for the samples containing a combination of Fe2O3 nano-particles and isolated Fe3+ sites. A synergy of two catalytic centers (particles and isolated sites) is proposed to explain the high performance of the highly loaded samples. The catalytic performance of Fe-MCM-41 was superior to other metal-containing MCM-41 (e.g. Ga, Sn, and Ti) catalysts, or other Fe-containing mesoporous materials (e.g. Fe-HMS).  相似文献   

12.
A novel process for the direct ammoxidation of propane over steam-activated Fe-silicalite at 723–823 K is reported. Yields of acrylonitrile (ACN) and acetonitrile (AcCN) below 5% were obtained using N2O or O2 as the oxidant. Co-feeding N2O and O2 boosts the performance of Fe-silicalite compared to the individual oxidants, leading to AcCN yields of 14% and ACN yields of 11% (propane conversions of 40% and products selectivity of 25–30%). The beneficial effect of O2 on the propane ammoxidation with N2O contrasts with other N2O-mediated selective oxidations over iron-containing zeolites (e.g. hydroxylation of benzene and oxidative dehydrogenation of propane), where a small amount of O2 in the feed dramatically reduces the selectivity to the desired product. It is shown that the productivity of ACN and especially AcCN, expressed as mol product h−1 kgcat−1, is significantly higher over Fe-silicalite than over active propane ammoxidation catalysts reported in the literature. Our results open new perspectives to improve the performance of alkane ammoxidation catalysts.  相似文献   

13.
Nanostructured vanadium nitride and carbide catalysts were prepared by the nitridation and carburization of vanadium oxide supported on M41S materials (MCM-41 and SBA-15) and activated carbon. The oxide precursors, V2O5/M41S, were obtained in three different synthesis strategies using “in situ” and “ex situ” incorporation of vanadia precursors (V(acac)3) into the mesoporous host. For the oxide precursors specific surface areas exceeding 1,200 m2 g−1 were achieved. After nitridation a slight decrease of surface area was observed. All VN catalysts show a high activity in propane dehydrogenation with a selectivity exceeding 80% towards propene. Impregnation and nitridation conditions have profound influence upon the catalytic activity. The highest activity was observed for VN supported on NORIT A.  相似文献   

14.
Infrared spectra of adsorbed CO have been used as a probe to monitor changes in Pt site character induced by the coking of Pt/Al2O3 and Pt–Sn/Al2O3 catalysts by heat treatment in heptane/hydrogen. Four distinguishable types of Pt site for the linear adsorption of CO on Pt/Al2O3 were poisoned to different extents showing the heterogeneity of the exposed Pt atoms. The lowest coordination Pt atoms (ν(CO) < 2030 cm−1) were unpoisoned whereas the highest coordination sites in large ensembles of Pt atoms (2080 cm−1) were highly poisoned, as were sites of intermediate coordination (2030–2060 cm−1). Sites in smaller two‐dimensional ensembles of Pt atoms (2060–2065 cm−1) were partially poisoned, as were sites for the adsorption of CO in a bridging configuration. The addition of Sn blocked the lowest coordination sites and destroyed large ensembles of Pt by a geometric dilution effect. The poisoning of other sites by coke was impeded by Sn, this effect being magnified for Cl‐containing catalyst. Oxidation or oxychlorination of coked catalyst at 823 K followed by reduction completely removed coke from the catalyst surfaces. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Cobalt tetramethoxyphenyl porphyrin (CoTMPP) adsorbed on a high area carbon support (Vulcan XC72-R) and heat-treated at 900 °C under inert atmosphere was studied as electrocatalyst for the reduction of O2 to H2O2 in acid medium. Experiments performed on rotating ring-disc electrode (RRDE) and gas diffusion electrode (GDE) show that the catalyst performance depends on the cobalt loading, going through a maximum at 0.2 wt. % Co. For higher cobalt loadings, a growing part of oxygen is reduced into water, decreasing therefore the selectivity of the catalyst. These results are interpreted in terms of a further reduction of H2O2 on Co-based catalytic sites before leaving the catalytic layer. For a GDE polarized at −150 mV vs. saturated calomel electrode (SCE) and loaded with 0.9 μg cm−2 of 0.2 wt. % Co-based catalyst, a H2O2 production rate of 300 μmol h−1 cm−2 was obtained which is five times higher than the H2O2 production rate measured with Vulcan. In these conditions, the selectivity of the Co-based catalyst for H2O2 production is 92%. The good agreement observed between RRDE and GDE results confirms the relevance of using RRDE experiment for screening these non-precious metal catalysts for further GDE applications.  相似文献   

16.
The adsorption and surface reactions of acetonitrile and acetonitrile-oxygen gas mixture were studied on TiO2-supported Au catalysts at 300–673 K. FTIR spectra show different kinds of molecularly adsorbed CH3CN:acetonitrile can be bonded to weak Lewis acid sites (2295 cm−1), to strong Lewis acid sites (2337 cm−1) of titania; it can be coordinated linearly through the lone electron pair of the N atom on Au sites and η2 (C,N) CH3CN species can be formed on Au particles. CH3CN dissociates on Au sites, the resulting CN(a) can be oxidized in small extent by lattice oxygen and in a greater extent by gaseous oxygen into NCO surface species. The formation of other products (CH3NH2, H2, CO2, CH4, C2H4 and CO) was demonstrated and discussed.  相似文献   

17.
Highly active and heat‐resisting W/HZSM‐5‐based catalysts for nonoxidative dehydro‐aromatization of methane (DHAM) have been developed and studied. It was found from the experiments that the W−H2SO4/HZSM−5 catalyst prepared from a H2SO4‐acidified solution of ammonium tungstate (with a pH value at 2–3) displayed rather high DHAM activity at 973–1023 K, whereas the W/HZSM‐5 catalyst prepared from an alkaline or neutral solution of (NH4)2WO4 showed very little DHAM activity at the same temperatures. Laser Raman spectra provided evidence for existence of (WO6)n- groups constructing polytungstate ions in the acidified solution of ammonium tungstate. The H2‐TPR results showed that the reduction of precursor of the 3% W–H2SO4/HZSM‐5 catalyst may occur at temperatures below 900 K, producing W species with mixed valence states, W5+ and W4+, whereas the reduction of the 3% W/HZSM‐5 occurred mainly at temperatures above 1023 K, producing only one type of dominant W species, W5+. The results seem to imply that the observed high DHAM activity on the W–H2SO4/HZSM‐5 catalyst was closely correlated with (WO6)n- groups with octahedral coordination as the precursor of catalytically active species. Incorporation of Zn (or La) into the W–H2SO4/HZSM‐5 catalyst has been found to pronouncedly improve the activity and stability of the catalyst for DHAM reaction. Over a 2.5% W–1.5% Zn–H2SO4/HZSM‐5 catalyst and under reaction conditions of 1123 K, 0.1 MPa, and GHSV=1500 ml/(h g−cat.), methane conversion (XCH4) reached 23% with the selectivity to benzene at ∼96% and an amount of coke for 3 h of operation at 0.02% of the catalyst weight used. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Ni–W hydrodesulfurization (HDS) catalysts supported on MCM-41 synthesized from two different silica sources (sodium silicate hydrate and tetraethylorthosilicate) as well as on Na+ or K+ ion exchanged MCM-41 were prepared. These catalysts were used to investigate the influence of the surface properties of MCM-41 on the performance of HDS catalysts with DBT as the model molecule. The XRD and N2 adsorption results indicated that the MCM-41 prepared from tetraethylorthosilicate (MCM-41(T)) exhibited the best structural properties. The mesostructure of MCM-41 synthesized from sodium silicate (MCM-41(S)) remained after ion exchange with Na2C2O2 and K2C2O2. Both pyridine FT-IR and Hammett indicators showed that only MCM-41(S) possessed some Brönsted and Lewis acid sites. Ni–W/MCM-41(S) showed the highest HDS and hydrogenation activities. The introduction of Na+ and K+ strongly inhibited the hydrogenation activity of Ni–W/MCM-41(S) but enhanced its hydrogenolysis activity. UV–vis and TPR studies indicated that the introduction of Na+ and K+ into MCM-41(S) may lead to the segregation of surface Ni species and may hinder the reducibility of the supported Ni–W oxides. Spillover hydrogen, which is “trapped” by Na+ and K+, may play an important role in the HDS activity and selectivity of Ni–W catalysts.  相似文献   

19.
The effect of TiO2 on the hydrodenitrogenation (HDN) performance of MoP/MCM-41 was investigated using quinoline and decahydroquinoline as the model molecules. The catalysts were characterized by XRD, CO chemisorption, TEM, TPR and pyridine FT-IR. Addition of TiO2 enhanced the C–N bond cleavage activity of MoP/MCM-41 but inhibited its dehydrogenation activity. A maximum HDN activity was observed when the TiO2 loading was 5 wt%. The characterization results indicated that introduction of TiO2 did not affect the formation of MoP phase. The TiO2-containing catalysts possessed higher CO uptake than MoP/MCM-41, but no significant differences in the acid properties and particle size distributions were observed for all the catalysts. XPS results revealed a surface enrichment of TiO2 in Ti-containing catalysts and small amount of these surface TiO2 can be partially reduced to Tin+ (n < 4). It is suggested that these Tin+ (n < 4) species may be responsible for the promoting effect of TiO2 on the HDN performance of MoP/MCM-41.  相似文献   

20.
Bimetallic Pd–Sn catalysts were synthesized by incipient-wetness impregnation of the metals on alumina and employed for the reduction of nitrates from aqueous solutions. The catalysts were characterized by FTIR spectroscopy of adsorbed CO, X-ray diffraction (XRD), transmission electron microscopy (TEM), and H2 chemisorption. The influence of the metal ratio was evaluated in reaction measurements. The bimetallic Pd–Sn catalysts exhibited high selectivity for nitrate removal forming less NO2 and NH4+ than the Pd–Cu catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号