首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In regions where the Mediterranean climate prevails, the agricultural sector and agricultural-operated dam reservoirs are threatened by climate change. In this respect, the prediction of hydro-meteorological changes that may occur in surface water resources under climate change scenarios is essential to examine the sustainability of reservoirs. In this paper, Demirköprü reservoir in the Gediz Basin/Turkey, a reservoir operated for irrigation purposes, was analyzed against the RCP4.5 and RCP 8.5 scenarios specified in the AR5 report of the IPCC. Projection period was evaluated as 2016-2050 water year period. First, statistical downscaling, Bayesian model averaging and quantile delta mapping bias correction techniques were respectively applied to monthly total precipitation and monthly average temperatures of meteorological stations in the region using 12 GCMs. According to RCP4.5 and RCP8.5, negligible reductions in precipitation are foreseen, while significant increases of 1.3 and 1.8 °C, respectively, are projected for temperatures under the same scenarios. Following the calibration of rainfall-runoff models for the sub-basins feeding the reservoir, streamflow simulations were also performed with projected precipitation and temperatures. In particular, according to the RCP 8.5 scenario, reservoir inflows during the period 2016-2050 could be reduced by 21% compared to the reference scenario results. Finally, the projected crop water demands and hydro-meteorological changes are evaluated together and the reservoir performances are examined using various indices. Assuming that the performance of the past irrigation yields will not change in the future, it is foreseen that reservoir’s sustainability will decrease by 16% under the RCP8.5 scenario. Even if the irrigation efficiency is increased by 40%, the reservoir cannot reach past sustainability characteristics.  相似文献   

2.
Water demand for irrigated agriculture is increasing against limited availability of fresh water resources in the lower reaches of the Amu Darya River e.g., Khorezm region of Uzbekistan. Future scenarios predict that Khorezm region will receive fewer water supplies due to climate change, transboundary conflicts and hence farmers have to achieve their yield targets with less water. We conducted a study and used AquaCrop model to develop the optimum and deficit irrigation schedule under shallow groundwater conditions (1.0–1.2 m) in the study region. Cotton being a strategic crop in the region was used for simulations. Capillary rise substantially contributes to crop-water requirements and is the key characteristic of the regional soils. However, AquaCrop does not simulate capillary rise contribution, thereby HYDRUS-1D model was used in this study for the quantification of capillary rise contribution. Alongside optimal irrigation schedule for cotton, deficit strategies were also derived in two ways: proportional reduction from each irrigation event (scenario-A) throughout the growth period as well as reduced water supply at specific crop growth stages (scenario-B). For scenario-A, 20, 40, 50 and 60 % of optimal water was deducted from each irrigation quota whereas for scenario-B irrigation events were knocked out at different crop growth stages (stage 1(emergence), stage 2 (vegetative), stage 3 (flowering) and stage 4 (yield formation and ripening)). For scenario-A, 0, 14, 30 and 48 % of yield reduction was observed respectively. During stress at the late crop development stage, a reduced water supply of 12 % resulted in a yield increase of 8 %. Conversely, during stress at the earlier crop development stage, yield loss was 17–18 %. During water stress at the late ripening stage, no yield loss was observed. Results of this study provide guidelines for policy makers to adopt irrigation schedule depending upon availability of irrigation water.  相似文献   

3.
Multi-purpose reservoir development have been always a big challenge for the management of water resources. This paper describes an integrated approach for investigating catchment hydrology in the development of a hydropower and a canal irrigation system based on model analyses. The investigation aims to adequately determine an optimal domestic and irrigation water resources allocation scheme based on an assessment of the reservoir water balance and capacity for hydropower. The soil and water assessment tool (SWAT) which characterizes basin hydrology and the water management and planning model MODSIM which provides a decision support system for water allocation optimization, were used in this study. The integrated approach was applied to Prek Te River basin in Cambodia. The water demand aspect was examined based on domestic water use, irrigation water, environmental flow, and water losses. An operational rule curve was developed for hydropower operation with respect to a power potential of 13 MW. Hydrologic modeling revealed 90 % dependable water of about 2.7 m3/s during the dry season and 214.3 m3/s during the wet season, indicative of a wet-season dependent reservoir for storage. Results from the 26-years simulation period also showed that diversions for domestic water and irrigation water supply were 92.3 % dependable for a 13 MW capacity hydropower development. The integrated approach was shown to be a valuable decision support tool for water resources management with the determination of an optimum policy for multi-purpose reservoir operation based on available basin water supply.  相似文献   

4.
潘登  任理  刘钰 《水利学报》2012,43(7):777-784
黑龙港及运东平原是河北省的主要农业区,同时也是华北平原的少雨中心,探讨适用于该地区冬小麦和夏玉米的水分生产函数类型,并应用于制定优化的灌溉制度,对于该区域节水农业的建设具有重要的现实意义。本文以经过参数率定与模拟验证的土壤水评价工具(SWAT)为手段,设置了1种充分灌溉处理和9种非充分灌溉情形,拟合得到冬小麦和夏玉米的水分生产函数,在此基础上,依据水分敏感系数(或指数)确定出灌溉的关键生育期,以不考虑氮磷胁迫的历史灌溉情景为基本情景,设置了3种优化灌溉方案。结果表明:在所确定的冬小麦和夏玉米灌溉的关键生育期,采用优化后的灌溉量,与基本情景相比,在保证冬小麦-夏玉米种植制度下的作物基本稳产(产量平均增加2.54%)的前提下,平均节省灌溉量23.55%,水分利用效率平均提高6.29%。总之,模拟得到的优化的灌溉制度对于该区域冬小麦-夏玉米轮作体系下的农田节水灌溉管理具有一定的参考价值。  相似文献   

5.
A two-phase stochastic dynamic programming model is developed for optimal operation of irrigation reservoirs under a multicrop environment. Under a multicrop environment, the crops compete for the available water whenever the water available is less than the irrigation demands. The performance of the reservoir depends on how the deficit is allocated among the competing crops. The proposed model integrates reservoir release decisions with water allocation decisions. The water requirements of crops vary from period to period and are determined from the soil moisture balance equation taking into consideration the contribution of soil moisture and rainfall for the water requirements of the crops. The model is demonstrated over an existing reservoir and the performance of the reservoir under the operating policy derived using the model is evaluated through simulation.  相似文献   

6.
This paper presents the application of a long-term streamflow forecasting model developed using artificial neural networks at a stream gauging station in the Awash River Basin, Ethiopia. The gauging station is located above the headworks of a large irrigation scheme called the Middle Awash Agricultural Development Enterprise (MAADE). Based on the forecasted streamflow time series and water requirements for irrigation and environmental purposes, appropriate agricultural water management strategies have been proposed for the irrigation scheme (MAADE). The water management strategies which were evaluated in this study are based on different scenarios of abstraction demands. These demands were formulated based on a range of options for agricultural development and change in MAADE. The scenarios evaluated were based on such factors as the existing planting patterns, changing planting dates, changing crop varieties and reducing the area under cultivation. An appropriate scenario of agricultural development was decided on the basis of the modified flows in the river vis-à-vis the trigger/threshold value established at the Melka Sedi stream gauging station. Considering all the scenarios, it is suggested that a 1–24% reduction in the area currently irrigated in the scheme will ensure a reliable supply of water to the scheme throughout the growing season and will provide sustainable environmental flow in the river.  相似文献   

7.
This study assesses evaporation losses from water reservoirs in the semi-arid Segura basin (south-east Spain), one of the most water stressed European catchments. These losses are evaluated from both the hydrologic and economic perspectives under different water availability scenarios that are based on water policy trends and climate change predictions. We take a multidisciplinary approach to the analysis, combining energy balance models to assess the effect of climate change on evaporation from water bodies, Class-A pan data and pan coefficients to determine evaporation loss on a regional scale, and non-linear mathematical programming modelling to simulate the economic impact of water use and allocation in the basin. Our results indicate that water availability could be reduced by up to 40 % in the worst-case scenario, with an economic impact in the 32–36 % range, depending on the indicator in question. The total annual evaporation loss from reservoirs ranges from 6.5 % to 11.7 % of the water resources available for irrigation in the basin, where evaporation from small reservoirs is more than twice that from large dams. The economic impact of such losses increases with water scarcity, ranging from 4.3 % to 12.3 % of the value of agricultural production, 4.0 % to 12.0 % of net margin, 5.8 % to 10.7 % of the irrigated area, and 5.4 % to 13.5 % of agricultural employment. Results illustrate the importance of evaporation losses from reservoirs in this region and the marked upward trend for future scenarios. Besides, they highlight the extent of the impact of climate change on future water resources availability and use in southern Europe.  相似文献   

8.
Since agriculture development would be affected by climate change, the reservoir operation for agricultural irrigation should be adjusted. However, there are to date few literatures addressing how to design adaptive operating rules for an irrigation reservoir. This study aims to analyze the adaption of fixed operating rules and to derive adaptive operating rules under climate change. The deterministic optimization model is established with the solving method of two-dimensional dynamic programming (TDDP), and its optimal trajectory is supplied to derive reservoir operating rules at time intervals of crop growth periods. Then, two alternative operating rules, including fixed operating rules based on historical data and adaptive operating rules based on climate change data, are extracted using the fitting method with the multiple linear regression model. The alteration of reservoir inflow under climate change is calculated by the Budyko formula. A case study of the China’s Dongwushi Reservoir shows that: (1) fixed operating rules are unable to adapt climate change in the future scenario. Thus, adaptive operating rules should be established, (2) adaptive operating rules can reduce profits loss resulting from climate change, and improve field soil water storages, and (3) precipitation reduction by 7%/40a is the major cause for agricultural profits loss, whereas, the decrement of agricultural profits is less than that of precipitation, which indicates agricultural crops have the resilience to resist the adverse influence from precipitation decrease. These findings are helpful for adaptive operation of irrigation reservoirs under climate change.  相似文献   

9.
The work presents the results of a comprehensive modelling study of surface and groundwater resources in the Muzza-Bassa Lodigiana irrigation district, in Northern Italy. It assesses the impact of changes in land use and irrigation water availability on the distribution of crop water consumption in space and time, as well as on the groundwater resources. A distributed, integrated surface water-groundwater simulation system was implemented and applied to the study area. The system is based on the coupling of a conceptual vadose zone model with the groundwater model MODFLOW. To assess the impact of land use and irrigation water availability on water deficit for crops as well as on groundwater system in the area, a number of management scenarios were identified and compared with a base scenario, reflecting the present conditions. Changes in land use may alter significantly both total crop water requirement and aquifer recharge. Water supply is sufficient to meet demand under present conditions and, from the crop water use viewpoint, a reduction of water availability has a positive effect on the overall irrigation system efficiency; however, evapotranspiration deficit increases, concentrated in July and August, when it may be critical for maize crops.  相似文献   

10.
Here we have developed a new model to simulate supplemental irrigation and the hydro-economic potential of a rainwater harvesting system in rainfed agricultural areas. Using the model, soil moisture in rainfed crop land, supplemental irrigation requirements, rainwater storage in an on-farm reservoir (OFR) system, and surface and ground water availability were predicted. In an irrigated system, an OFR was used to harvest rainwater during the rainy season, and stored water was applied to cropland as supplemental irrigation (SI). An economic analysis was performed to calculate the benefits due to an OFR irrigation system, and gains from increased crop yield and downstream water availability in the irrigated OFR system were compared with rainfed system (i.e. no OFR). In addition, we calculated the impacts of dry and wet seasons on total value gains (grain and water gains) for irrigated and rainfed conditions and performed a sensitivity analysis to quantify the impacts of model input parameters on total value gains. Analyses showed that the OFR system can produce crop yields three times greater than rainfed agriculture. During a water stress season, the total water use in the irrigated system was 65 % greater than for the rainfed system. Water use efficiency of the irrigated system was 82 % higher than for the rainfed system. In a dry season, the total value gains due to increased crop yield by supplemental irrigation and downstream water availability of the irrigated system were 74 % greater than for the rainfed system, while in a wet season the total value gain of the irrigated system was 14 % greater than for the rainfed system. A precipitation scenario analysis of wet and dry seasons indicated that the benefits of a rainwater harvesting system can be considerably greater in dry seasons than wet seasons.  相似文献   

11.

Assessing the effects of climate change phenomenon on the natural resources, especially available water resources, considering the existing constraints and planning to reduce its adverse effects, requires continuous monitoring and quantification of the adverse effects, so that policymakers can analyze the performance of any system in different conditions clearly and explicitly. The most important objectives of the present research including: (1) calculating the sustainability index for each demand node based on the characteristics of its water supply individually and also calculating the sustainability index of the whole water supply system, (2) investigation the compatible of changes trend among various reservoir performance indexes and (3) evaluation the changes in performance reservoir indexes in the future time period compared to the baseline tie period under three Concentration Pathway (RCP) RCP2.6, RCP4.5 and RCP8.5 scenarios for all water demand nodes and the entire water supply system. To this end, first, climatic parameters data affecting on the water resources such as temperature and precipitation were gathered in the baseline period (1977–2001) and the climatic scenarios were generated for the future period (2016–2040) using the Fifth Assessment Report (AR5) of the International Panel on Climate Change (IPCC). Then, the irrigation demand changes of the agricultural products with the Cropwat model and the value of inflow to the reservoir with the Artificial Neural Network (ANN) model were calculated under the climate change effects. In the next step, the climate change effects on the water supply and demand were simulated using Water Evaluation and Planning model (WEAP), and its results were extracted so as the water management indexes. The results show that the temperature will increase in the future period under all three RCP scenarios (RCP2.6, RCP4.5 and RCP8.5) compared to the baseline period, while precipitation will decrease under the RCP2.6 scenario but will increases under RCP4.5 and RCP8.5 scenarios. Under the trend of changing in temperature and rainfall, the irrigation demand in the agricultural sector in all scenarios will increase compared to the baseline period. However, the inflow of reservoir will decrease under the RCP2.6 and RCP4.5 scenarios and will increases under RCP8.5 scenario. Evaluation of WEAP modeling results shows that the sustainability index of the entire Marun water-energy system will decrease in the future period compared to the baseline period under the RCP2.6, RCP4.5 and RCP8.5 scenarios by 13, 10 and 8%, respectively. The decrease in the system sustainability index shows that in the absence of early planning, the Marun water-energy supply system will face several challenges for meeting the increasing demand of water in different consumer sectors in the coming years.

  相似文献   

12.
The adoption of measures leading to higher efficiencies in the use of both water and energy in water distribution networks is strongly demanded. The methodology proposed combines a multi-objective approach and a financial analysis to determine de optimal design of pressurized irrigation networks which entails the minimization of both the investment cost and operational cost under three operating scenarios that incorporate energy saving strategies: 1- all hydrants operate simultaneously; 2- hydrants are grouped into sectors and irrigation turns are established; 3- the on-demand operation of the network is assumed. This methodology has been applied in a real irrigation network located in Southern Spain showing that the lowest overall design cost (investment and operational costs) is achieved in scenario 2. The comparison of the selected solutions in the three proposed scenarios with the current network design considering the total fulfillment of irrigation requirements showed that operational cost savings between 65% and 76% could be achieved.  相似文献   

13.
The influence of climate change on the performance strategy of an irrigation water resources system (WRS) containing a reservoir cascade is discussed as a decision-making problem under uncertainty. There are: (1) a set of climate change scenarios and (2) a set of river runoff sequences and a set of irrigation demand sequences with various statistical characteristics (sets (2) correspond to every scenario (1)). The function of transfer from the scenarios to the sequences is defined as certain subjective probabilities. The probabilities reflect the degree of the expert confidence in the plausibility of hydrology and moistening hypothesis. There is an index showing the degree of departure of WRS performance from the normal and from the worst values. The proposed technique allows us to (a) generate hydrology and water demand scenarios; (b) calculate the subjective probabilities; (c) compute the irrigation rates as a function of precipitation, radiation balance, etc., and then to compute of irrigation demand schedules; (d) to simulate the WRS. The algorithms of water resources distribution between the users and of WRS operation with stochastic water demands were implemented in a simulation model. The Terek river basin (North Caucasus, Russia) was taken for sample computations.  相似文献   

14.
The canal water supply, which is the only source of irrigation, in the rice-dominated cropping system of the Hirakud canal command (eastern India) is able to meet only 54 % of the irrigation demand at 90 % probability of exceedance. Hence, considering groundwater as the supplemental source of irrigation, conjunctive use management study by combined simulation-optimization modelling was undertaken in order to predict the maximum permissible groundwater pumpage from the command area. Further, optimal land and water resources allocation model was developed to determine the optimal cropping pattern for maximizing net annual return. The modelling results suggested that 2.0 and 2.3 million m3 of groundwater can be pumped from the bottom aquifer during monsoon and non-monsoon seasons, respectively, at 90 % probability of exceedance of rainfall and canal water availability (PERC). Optimal cropping patterns and pumping strategies can lead to about 51.3–12.5 % increase in net annual return from the area at 10–90 % PERC. The sensitivity analysis of the model indicates that the variation in the market price of crops has very high influence on the optimal solution followed by the cost of cultivation and cultivable area. Finally, different future scenarios of land and water use were formulated for the command area. The adoption of optimal cropping patterns and optimal pumping strategies is strongly recommended for sustainable management of available land and water resources of the canal command under hydrological uncertainties.  相似文献   

15.
This research investigated the optimum on-farm water management methods for a summer crop (Maize). Water equity and productivity were optimized simultaneously by using genetic algorithms in Doroodzan Irrigation Network. Increase in water reduction fraction (WRF) (0.0 to 0.8) has the incremental effect on water equity (on average 19.4 %), however by increasing WRF, water productivity initially increased (on average 25.3 % at WRF?=?0.4) and then decreased. With increasing irrigation application efficiency (Ea) (40 to 90 %), the values of water equity and productivity increased by on average 52.8 and 91.5 %, respectively. Increment of conveyance efficiency of channels (Ec) (70 to 90 %) resulted in minimum incremental effect on water equity and productivity (on average 18.5 and 11.9 %, respectively). Furthermore, the values of performance measure decreased from wet water year to drought water year. Tape irrigation system was considered as the best choice at low quantities of WRF (<=0.4), however for higher values of WRF (>?=?0.6), sprinkler irrigation system was considered as the best choice for achieving higher values of water equity and productivity. Meanwhile, when equity and productivity were considered together for a specific method of deficit irrigation scheduling, under specified quantity of irrigation water, with increasing equity the water productivity reduction was negligible.  相似文献   

16.
The success of irrigation system operation and planning depends on accurate quantification of supply and demand, and an equitable distribution of available water. The ultimate aim of this study was to determine how to meet the irrigation water demands if possible or to minimize the gap between the water supply and the demand. Most of the irrigation literature focuses only on the demand and the distribution aspects of this issue Irrigation projects that receive water from reservoirs, however, can be challenging to manage because the annual fluctuations in available water release from a reservoir can have a considerable impact on the irrigation management strategy. In real‐world situations, the reservoir operating rules guide reservoir operators in making actual water release decisions. This study develops a water balance simulation model for reservoir management, as well as testing it for Kangsabati Reservoir, West Bengal, India. Two rule curves for deciding irrigation water available from the reservoir were generated by taking the average and minimum stage values on a daily basis for a 16‐year period (1988–2003). Maintaining a minimum stage of 120.4 m throughout the year served as another rule to decide the release water available for irrigation. The minimum allowable stage of reservoir corresponding to a particular date of the year can be determined from those reservoir specific rule curves generated for irrigation purposes. The maximum permissible water release/outflow for irrigation from the test reservoir was taken as the volume of water available above the minimum allowable stage corresponding to the selected rule curve. The saturated hydraulic conductivity value (KS) was calibrated to be 4.31 mm day?1 for Kangsabati Reservoir.  相似文献   

17.
小浪底水利枢纽的工程规模和综合运用方式   总被引:1,自引:0,他引:1  
经对三门峡至秦厂河段开发方案比选,小浪底高坝方案,较好地满足防洪、防凌、减淤、供水、灌溉、发电的需要。对小浪底水库蓄水位265m、270m和275m的技术经济比较,各方案的防洪、灌溉和防凌效益相同,均可满足要求,但蓄水位275m方案的减淤效益最大。推荐275m方案为小浪底水库最高蓄水位,在经济上是合理的,技术上也是安全可行的。小浪底枢纽的运用首先是满足防洪、防凌、减淤的要求,相应进行供水、灌溉、发电。为了发挥水库减淤作用,采取在汛期逐步抬高水位的运用方式,多拦粗沙,提高对下游的减淤效果。10月至次年6月来水含沙量少,水库进行供水、灌溉、发电的蓄水调节。  相似文献   

18.
Hydrological models have been used in many places of the world in order to support practitioners with respect to watershed management actions. The goal of this research was to apply the Lavras Simulation of Hydrology (LASH model) to a Brazilian tropical watershed dominated by Oxisols, to estimate maximum, minimum and mean stream flows for both current land-use (“scenario 1”) and other regional trend land-use scenarios (“scenario 2”—pasture into eucalyptus; and “scenario 3”—eucalyptus into pasture). This model is a continuous, distributed and semi-conceptual model for simulation of different hydrological components on a daily basis. The model had a good performance with respect to the “scenario 1”, resulting in Nash-Sutcliffe coefficients equal to 0.81, 0.82 and 0.98 for minimum, maximum and mean discharges, respectively. When “scenario 2” was simulated, it was found that minimum, mean and maximum stream flows had their values reduced in average by 7.39 %, 13.84 % and 20.38 %, respectively. On the contrary, it was observed in “scenario 3” an increase in average by 0.23 %, 0.44 % and 1.19 % for minimum, mean and maximum stream flows, respectively. With respect to water yield, scenario 2 resulted in a mean reduction of 119 mm, whereas for scenario 3 the difference was not so pronounced in relation to the current land use. Results obtained in scenario 2 are troublesome since this watershed drains into an important regional Hydroelectric Power Plant Reservoir and this approach needs to be considered by the Minas Gerais State electric energy company for its planning strategies for the future.  相似文献   

19.
A number of models with conventional optimization techniques have been developed for optimization of reservoir water release policies. However these models are not able to consider the heterogeneity in the command area of the reservoir appropriately, due to non linear nature of the processes involved. The optimization model based on genetic algorithm (GA) can deal with the non linearity due to its inherent ability to consider complex simulation model as evaluation function for optimization. GA based models available in literature generally minimize the water deficits and do not optimize the total net benefits through optimal reservoir release policies. The present study focuses on optimum releases from the reservoir considering heterogeneity of the command area and responses of the command area to the releases instead of minimizing only the reservoir storage volumes. An optimization model has been developed for the reservoir releases based on elitist GA approach considering the heterogeneity of the command area. The developed model was applied to Waghad irrigation project in upper Godavari basin of Maharashtra, India. The results showed that 19% increase in the total net benefits could be possible by adopting the proposed water release policy over the present practice keeping same distribution of area under different crops. The model presented in this study can also optimize the crop area under irrigation. It is found that irrigated area can be increased to 50% of ICA (Irrigable Command Area) from the existing 23% with resulting addition to total net benefits by 31%. The effect of adopting the proposed irrigation schedule and increased irrigation areas would be to increase the net benefits to existing farmers.  相似文献   

20.
During recent years, the international attention paid to rational use and saving of water has increased, partly because of frequent water shortages occurring also in countries not usually involved in these problems, and partly as a consequence of rising conflicts on water allocation. Hence it is important to find new surface-water volumes satisfying agricultural water demand, as well as new ways and areas to store them. The simulation model presented by the paper enables evaluation, in a phase of design feasibility analysis, of whether a flood detention pond can be adapted to act as water storage during irrigation periods in order to reduce agricultural water shortages; it simulates detention pond response to floods and droughts under different hydraulic conditions and reservoir management rules. The first policy goal of the model is to maintain the stored volume within the maximum admissible for flood safety. The second goal is to maintain at the same time a minimum flow in the river and to satisfy irrigation water demand. The model, implemented in a purpose-made simulation software, was applied to an Italian river in the Emilia Romagna region: the results demonstrate that the use of a flood detention pond as an irrigation reservoir is not only possible, if it complies with the operating rules that emerge from this study, but also it brings tangible benefits in reducing agricultural water deficit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号