首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 382 毫秒
1.
Regionally expressed cell surface molecules are thought to mediate contact-dependent interactions that regulate pattern formation and axon pathfinding in the developing vertebrate central nervous system (CNS). We recently isolated monoclonal antibody (mAb) CARO 2 through a screen for positional markers in the developing rat CNS. Between embryonic day (E)11.5 and E13, mAb CARO 2 specifically labels both the floor plate and notochord in the developing spinal cord. In contrast to the distribution of several well-characterized ventral midline markers, mAb CARO 2 labeling is restricted to the apical portion of the floor plate and the outer surface of the notochord. The anterior limit of mAb CARO 2 immunoreactivity corresponds to the midbrain/hindbrain border. Floor plate labeling persists throughout embryogenesis, whereas notochord labeling is not detectable after E13. During later stages of embryonic development (E16-E20) apically restricted floor plate labeling is present only in the rostral spinal cord. In postnatal rats, mAb CARO immunoreactivity is not present in any region of the CNS. Immunoblot analyses show that mAb CARO 2 recognizes an epitope on a 28-kD protein that is enriched in the floor plate, transiently expressed during embryogenesis, and membrane-associated. Consistent with the latter result, mAb CARO 2 labels the surfaces of floor plate cells. These findings suggest that the CARO 2 antigen is a new cell surface marker of the floor plate and notochord which may participate in neural cell patterning and/or axon guidance in the developing rat spinal cord.  相似文献   

2.
The rostral migratory stream consists of a large number of cells migrating from the lateral ventricles to the rostral telencephalon, primarily the olfactory bulb. The pathway continually provides neuro- and glioblasts throughout life. The present paper indicates that a considerable number of cells undergo apoptotic cell death en route, even in young (day 3) rats when presumably many vacant sites are still available in the developing brain.  相似文献   

3.
Migrating cells form dynamic and highly regulated adhesive interactions with their environment. In particular, integrin-mediated adhesions to the extracellular matrix (ECM) play a central role in cell migration. This review focuses on recent advances in understanding the adhesive mechanisms that regulate cell detachment at the rear of migrating fibroblasts and neutrophils. The contribution of several key adhesive regulators is discussed, including myosin mediated cell contractility, tyrosine phosphorylation, rho, calcium fluxes, and calpain. A challenge for future investigation will be to determine how adhesive events are spatially and temporally coordinated to promote productive directional cell movements.  相似文献   

4.
The combination of anti-CD2 mAb 9.6 and 9-1, specific for distinct epitopes, induces proliferation of resting human T cells. The mitogenic activity of this mAb mixture depends upon accessory cells and the 9-1 mAb Fc domain. To further study the functional properties of these mAb, their variable regions were cloned and expressed as monospecific single-chain Fv (scFv) proteins fused to the human IgG1 Fc domain (scFvIg). A novel bispecific scFvIg was constructed by cloning the two monospecific scFv binding sites in tandem, with the 9.6 scFv placed N-terminal to the 9-1 scFvIg. Monospecific scFvIg binding to CD2 was comparable to that of the corresponding parental mAb, while the bispecific scFvIg exhibited binding activity similar to that of the 9-1 scFvIg. The combination of 9.6 scFvIg and 9-1 mAb was mitogenic, whereas mixtures including the 9-1 scFvIg were non-stimulatory, confirming the unique properties of the 9-1 IgG3 Fc. Without the IgG3 tail, the bispecific 9.6/9-1 scFvIg was directly mitogenic and was a more potent mitogen than the mAb mixture, but was accessory cell dependent. Unlike the combination of mAb, the bispecific reagent did not directly mobilize calcium in T cells. In comparison to the mAb mixture, bispecific 9.6/9-1 scFvIg-mediated stimulation of a mixed lymphocyte reaction was significantly more resistant to inhibition of the CD28 co-stimulatory pathway by the inhibitor CTLA-4-Ig. These results show that expression of the 9.6 and 9-1 binding sites together on a bispecific scFvIg increased the mitogenic properties of the mAb and altered the degree of accessory cell signals required for T cell activation.  相似文献   

5.
We previously identified the structural requirement for the inhibitory activity of Leishmania lipophosphoglycan (LPG) to block endothelial adhesion to monocytes. Here we showed that LPG reduces transendothelial migration of monocytes. LPG pretreatment of endothelial cells (2 microM, 1 h) reduced monocyte migration across endothelial cells activated by bacterial endotoxin (LPS) or IL-1beta (60 and 46%, respectively). A fragment of LPG (i.e., repeating phosphodisaccharide (consisting of galactosyl-mannose)) and LPG coincubated with LPG-neutralizing mAb lacks inhibitory activity on monocyte migration. Pretreatment of monocytes with LPG (2 microM, 1 h) also did not affect monocyte migration through control or LPS-activated endothelial cells. FACS analysis reveals that LPG treatment blocked the LPS-mediated expression of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 on endothelial cells and monocyte adhesion without altering the integrity of the endothelial monolayer. LPG (2 microM, 1 h) alone was capable of altering the expression and distribution of two junctional adhesion molecules, CD31 and vascular endothelium cadherin, as well as reversing the effects of LPS on these proteins. The induction of endothelial cells by LPS to transcribe and release monocyte chemoattractant protein-1 (MCP-1) was significantly reduced by LPG (40-65%). LPG treatment of nonactivated endothelial cells also suppressed by 55 to 75% the monocyte migration triggered by a MCP-1 chemoattractant gradient, and coincubation of LPG with neutralizing mAb abrogated the inhibitory activity. Together, these data point to a novel anti-inflammatory function of LPG in reducing monocyte migration across endothelial cells via a mechanism of inhibition of endothelial expression of cell adhesion molecules, modulation of intercellular junctional proteins, and synthesis of MCP-1.  相似文献   

6.
The preoptic area/anterior hypothalamus (POA/AH) is a site where hormones dramatically influence development. The POA/AH is comprised of multiple subgroups, but little is known about the derivation of these subgroups during development. Results from several laboratories suggest that some cells in the POA/AH originate from progenitor cells in other regions of the developing nervous system. We are exploring pathways for migration in the developing POA/AH in two ways. First, we are examining the distribution of radial glial processes as potential migratory guides using immunocytochemistry. We have identified a transient pattern of radial glial processes from the lateral ventricles to the pial surface at the base of the POA/AH. Additionally, the expression of a molecule in radial glial processes originating in the third ventricle was decreased by prenatal treatment with testosterone. Second, we are utilizing time-lapse video microscopy in vitro to assess the extent and direction of movements of fluorescent dye-labeled cells at different ages in brain slice preparations from the POA/AH of developing rats. Data from these studies indicate that cell migration in the POA/AH includes movements along dorsal-ventral routes and from lateral to medial positions, in addition to the predicted medial to lateral pathway away from the third ventricle. Several researchers have examined effects of gonadal steroids on neurite outgrowth, cell differentiation, cell death, and synaptogenesis. The determination of cell position, however, may be a key event influenced by gonadal steroids earlier in development. The characterization of migratory pathways that contribute to permanent changes in brain structure and ultimately function is essential for unraveling the process of sexual differentiation.  相似文献   

7.
The leukocyte integrin LFA-1 plays an important role in leukocyte trafficking and the immune response. Using LFA-1-deficient mice, we demonstrate that LFA-1 regulates the trafficking of lymphocytes to peripheral lymph nodes, and, to a lesser degree, to mesenteric lymph nodes and acute inflammatory sites. LFA-1, either because of its role in initial adhesion and/ or the passage of leukocytes across endothelial cells, plays a vital role in T lymphocyte and neutrophil transendothelial migration. Neutrophils and activated T lymphocytes from LFA-1-deficient mice were unable to cross endothelial cell monolayers in response to a chemokine gradient, whereas wild-type (WT) T lymphocytes and neutrophils were capable of migration. By contrast, LFA-1-deficient T lymphocytes displayed normal chemotaxis to the same chemokine. Our studies with LFA-1-deficient monocytes indicate that LFA-1 acts in concert with complement receptor 3 to mediate transendothelial migration of these cells, as anti-CD18 monoclonal antibodies (mAb) blocked both WT and LFA-1-deficient monocyte transendothelial migration, whereas anti-CD11 b mAb preferentially blocked transendothelial migration of LFA-1-deficient monocytes. Finally, whereas anti-CD31 mAb blocked WT monocyte and neutrophil transendothelial cell migration they did not block LFA-1-deficient monocyte and neutrophil transendothelial migration.  相似文献   

8.
Chain migration of neuronal precursors   总被引:1,自引:0,他引:1  
In the brain of adult mice, cells that divide in the subventricular zone of the lateral ventricle migrate up to 5 millimeters to the olfactory bulb where they differentiate into neurons. These migrating cells were found to move as chains through a well-defined pathway, the rostral migratory stream. Electron microscopic analysis of serial sections showed that these chains contained only closely apposed, elongated neuroblasts connected by membrane specializations. A second cell type, which contained glial fibrillary acidic protein, ensheathed the chains of migrating neuroblasts. Thus, during chain migration, neural precursors moved associated with each other and were not guided by radial glial or axonal fibers.  相似文献   

9.
Recruitment of leukocytes from blood to tissue in inflammation requires the function of specific cell surface adhesion molecules. The objective of this study was to identify adhesion molecules that are involved in polymorphonuclear leukocyte (PMN) locomotion in extravascular tissue in vivo. Extravasation and interstitial tissue migration of PMNs was induced in the rat mesentery by chemotactic stimulation with platelet-activating factor (PAF; 10(-7) M). Intravital time-lapse videomicroscopy was used to analyze migration velocity of the activated PMNs, and the modulatory influence on locomotion of locally administered antibodies or peptides recognizing various integrin molecules was examined. Immunofluorescence flow cytometry revealed increased expression of alpha4, beta1, and beta2 integrins on extravasated PMNs compared with blood PMNs. Median migration velocity in response to PAF stimulation was 15.5 +/- 4.5 micron/min (mean +/- SD). Marked reduction (67 +/- 7%) in motility was observed after treatment with mAb blocking beta1 integrin function (VLA integrins), whereas there was little, although significant, reduction (22 +/- 13%) with beta2 integrin mAb. Antibodies or integrin-binding peptides recognizing alpha4beta1, alpha5beta1, or alphavbeta3 were ineffective in modulating migration velocity. Our data demonstrate that cell surface expression of beta1 integrins, although limited on blood PMNs, is induced in extravasated PMNs, and that members of the beta1 integrin family other than alpha4beta1 and alpha5beta1 are critically involved in the chemokinetic movement of PMNs in rat extravascular tissue in vivo.  相似文献   

10.
BACKGROUND: In the trunk of avian embryos, neural crest migration through the somites is segmental, with neural crest cells entering the rostral half of each somitic sclerotome but avoiding the caudal half. Little is known about the molecular nature of the cues-intrinsic to the somites-that are responsible for this segmental migration of neural crest cells. RESULTS: We demonstrate that Eph-related receptor tyrosine kinases and their ligands are essential for the segmental migration of avian trunk neural crest cells through the somites. EphB3 localizes to the rostral half-sclerotome, including the neural crest, and the ligand ephrin-B1 has a complementary pattern of expression in the caudal half-sclerotome. To test the functional significance of this striking asymmetry, soluble ligand ephrin-B1 was added to interfere with receptor function in either whole trunk explants or neural crest cells cultured on alternating stripes of ephrin-B1 versus fibronection. Neural crest cells in vitro avoided migrating on lanes of immobilized ephrin-B1; the addition of soluble ephrin-B1 blocked this inhibition. Similarly, in whole trunk explants, the metameric pattern of neural crest migration was disrupted by addition of soluble ephrin-B1, allowing entry of neural crest cells into caudal portions of the sclerotome. CONCLUSIONS: Both in vivo and in vitro, the addition of soluble ephrin-B1 results in a loss of the metameric migratory pattern and a disorganization of neural crest cell movement. These results demonstrate that Eph-family receptor tyrosine kinases and their transmembrane ligands are involved in interactions between neural crest and sclerotomal cells, mediating an inhibitory activity necessary to constrain neural precursors to specific territories in the developing nervous system.  相似文献   

11.
Some authors claim that microglia originate from the neuroepithelium, although most now believe that microglial cells are of mesodermal origin, and probably belong to the monocyte/macrophage cell line. These cells must enter the developing central nervous system (CNS) from the blood stream, the ventricular space or the meninges. Afterward microglial cells are distributed more or less homogeneously through the entire nervous parenchyma. Stereotyped patterns of migration have been recognized during development, in which long-distance tangential migration precedes radial migration of individual cells. Microglial cells moving through the nervous parenchyma are ameboid microglia, which apparently differentiate into ramified microglia after reaching their definitive location. This is supported by the presence of cells showing intermediate features between those of ameboid and ramified microglia. The factors that control the invasion of the nervous parenchyma, migration within the developing CNS and differentiation of microglial cells are not well known. These phenomena apparently depend on environmental factors such as soluble or cell-surface bound molecules and components of the extracellular matrix. Microglial cells within the developing CNS are involved in clearing cell debris and withdrawing misdirected or transitory axons, and presumably support cell survival and neurite growth.  相似文献   

12.
13.
Activation of human natural killer (NK) cells involves sequential events including cytokine production and induction of cell surface molecules, resulting in the enhancement of cytolytic activity. To delineate the activation process of NK cells, we generated murine monoclonal antibodies (mAbs) against YT, a human large granular lymphocyte/natural killer (LGL/NK) cell line. Among the mAbs reactive with YT cells, one mAb, termed 2B9, was noted because of the lack of reactivity with most of the human T- and B-cell lines tested. In fresh peripheral blood mononuclear cells (PBMC), however, the majority of cells expressing this antigen (Ag) were T cells but not CD16+ nor CD56+ NK cells. Since YT cells showed an activated phenotype expressing interleukin-2 (IL-2) receptor alpha chain, we examined whether 2B9 Ag could be induced on normal human peripheral blood NK cells by cytokines known to activate NK cells. The 2B9 Ag was induced on NK cells by IL-2, IL-12 or IL-15 while no induction was observed by interferon-gamma (IFN-gamma). Biochemical analysis showed that anti-2B9 mAb recognized a 115 kDa molecule in YT cells. A cDNA clone encoding the 2B9 Ag was isolated from a cDNA expression library of YT cells and its sequence was identical to CD26 cDNA although it was not of full length. Transient expression of the 2B9 cDNA on COS-7 cells revealed that this cDNA encodes the antigenic epitope(s) recognized by anti-2B9 mAb as well as Ta1, an anti-CD26 mAb. These results showed that the 2B9 Ag is identical to CD26, and demonstrated that CD26 is an activation antigen on CD16+ CD56+ NK cells inducible by IL-2, IL-12 or IL-15.  相似文献   

14.
CTLA4 is a cell surface molecule that shares 30% homology with CD28 and binds B7 family members with high affinity. Analysis of surface expression on murine T cells revealed up-regulation after stimulation with anti-CD3 mAb in vitro and further augmentation after the addition of exogenous IL-2 or anti-CD28 mAb. The effects of IL-2 and anti-CD28 mAb were additive and in part independent, as anti-CD28 mAb increased anti-CD3 mAb-induced T cell CTLA4 expression in IL-2-deficient mice. In contrast, CTLA4 expression was only minimally augmented by the addition of IL-4, IL-6, IL-7, or IL-12. Expression of CTLA4 induced by anti-CD3 mAb was inhibited by anti-IL-2 plus anti-IL-2R mAbs. Inasmuch as these agents prevented T cell proliferation, the effects of cell cycle inhibitors also were examined. Drugs blocking at G1 (cyclosporin A, mimosine) or S (hydroxyurea) phase inhibited the up-regulation of CTLA4 induced by anti-CD3 mAb, suggesting that entry into the cell cycle was necessary to increase the expression of CTLA4. The kinetics of intracellular expression of CTLA4 after stimulation with anti-CD3 mAb paralleled those of surface expression, but surprisingly, much more CTLA4 was localized in the cytoplasm of T lymphocytes than on the cell surface at each time point. Importantly, surface CTLA4 was rapidly internalized intracellularly, which may explain the low levels of expression generally detected on the cell surface. We conclude that both CD28 and IL-2 play important roles in the up-regulation of CTLA4 expression. In addition, the cell surface accumulation of CTL4 appears to be primarily regulated by its rapid endocytosis.  相似文献   

15.
Previous studies have shown that triggering multiple myeloma (MM) cells via CD40 induces IL-6-mediated autocrine growth as well as increased expression of cell surface adhesion molecules including CD11a, CD11b, CD11c, and CD18. In this study, we generated the 5E2 mAb which targets an antigen that is induced upon CD40 ligand (CD40L) activation of MM cells. Immunofluorescence, immunoprecipitation, and protein sequencing studies identified the target antigen of 5E2 mAb as the 86-kD subunit of the Ku autoantigen. We demonstrate that increased cell surface expression of Ku on CD40L-treated cells is due to migration of Ku from the cytoplasm to the cell surface membrane. Moreover, cell surface Ku on CD40L-treated MM cells mediates homotypic adhesion of tumor cells, as well as heterotypic adhesion of tumor cells to bone marrow stromal cells and to human fibronectin; and 5E2 mAb abrogates IL-6 secretion triggered by tumor cell adherence to bone marrow stromal cells. These data suggest that CD40L treatment induces a shift of Ku from the cytoplasm to the cell surface, and are the first to show that Ku functions as an adhesion molecule. They further suggest that cell surface Ku may play a role in both autocrine and paracrine IL-6-mediated MM cell growth and survival.  相似文献   

16.
Currents that leak out of wounds generate electric fields lateral to the wound. These fields induce directional locomotion of human keratinocytes in vitro and may promote wound healing in vivo. We have examined the effects of growth factors and calcium, normally present in culture medium and the wound fluid, on the directional migration of human keratinocytes in culture. In electric fields of physiologic strength (100 mV per mm), keratinocytes migrated directionally towards the cathode at a rate of about 1 microm per min. This directional migration requires several growth factors. In the absence of these growth factors, the cell migration rate decreased but directionality was maintained. Epidermal growth factor alone restored cell migration rates at concentrations as low as 0.2 ng per ml. Insulin at 5-100 microg per ml or bovine pituitary extract at 0.2%-2% vol/vol also stimulated keratinocyte motility but was not sufficient to fully restore the migration rate. Keratinocyte migration in electric fields requires extracellular calcium. Changes in calcium concentrations from 3 microM to 3.3 mM did not significantly change keratinocyte migration rate nor directionality in electric fields; however, addition of the chelator ethyleneglycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid to migration medium reduced, and eventually abolished, keratinocyte motility. Our results show that (i) growth factors and extracellular calcium are required for electric field-induced directional migration of human keratinocytes, and (ii) keratinocytes migrate equally well in low and high calcium media.  相似文献   

17.
Expression of tyrosine hydroxylase (TH) by juxtaglomerular (JG) neurons of the olfactory bulb (OB) requires innervation of the bulb by olfactory receptor neurons (ORNs). ORN lesion selectively downregulates TH in JG neurons. In reversible odor deprivation, TH expression is downregulated as the naris is closed and then upregulated upon naris reopening. The mechanism or mechanisms regulating this dependence are unknown. TH expression could be regulated by trophic factor release and/or synaptic activity from ORN terminals. We investigated TH expression in cocultures of dissociated postnatal rat OB cells and embryonic olfactory neuroepithelium (OE) slice explants. TH-positive neurons in control dissociated OB cell cultures alone comprise only a small fraction of the total population of cells present in the culture. However, when OE slice explants are cocultured with dispersed OB cells, there is a mean 2.4-fold increase in the number of TH-positive neurons. ORNs in vivo use glutamate as a neurotransmitter. Broad spectrum excitatory amino acid antagonists (kyurenic acid) or selective antagonists of the NMDA receptor (APV) both prevent induction of TH expression in OE-OB cocultures. Furthermore, pulse application of NMDA stimulates TH expression in OB neurons in the absence of OE. In vitro, OB TH neurons express NMDA receptors, suggesting that NMDA stimulation is acting directly on TH neurons. Exposure of OE explants to natural odorants results in upregulation of TH, presumably through increased ORN activity, which could be blocked by APV. These findings indicate that odorant-stimulated glutamate release by ORN terminals regulates TH expression via NMDA receptors on JG dopaminergic neurons.  相似文献   

18.
We previously described a rat olfactory receptor neuron (ORN) subpopulation [the 2A4(+) ORNs] that shows uniquely strong reactivity with antibodies to the 70-kD heat shock protein (HSP70) family of molecular chaperones (Carr et al. [1994] J. Comp. Neurol. 348:150-160). The 2A4(+)ORNs are dispersed through zones II-IV of the olfactory epithelium (OE), and their axons project to only two or three glomeruli that are located consistently in each olfactory bulb (OB). To date, the 2A4(+)ORN subpopulation is the only cell population to show such distinct HSP70 immunoreactivity as well as the most discrete ORN subpopulation to be so labeled. The present report shows that 2A4(+)ORN neurons first appear between postnatal days 7 (P7) and P10. Initially, low cell numbers rise to a density of 0.1 2A4(+)ORNs/mm OE length by P14, plateau at 0.9 2A4(+)ORNs/mm by P49, then fall to adult values of 0.4 cells/mm. Autoradiographic birthdating indicates that almost all of these early appearing 2A4(+)ORNs are generated postnatally, in contrast to the prenatal generation of all ORN subpopulations characterized to date by their expression of olfactory receptor protein mRNAs. A developmentally related increase in the mean depth of 2A4(+)ORNs within the OE also occurs. In the OB, initial 2A4(+)axonal projections are to only two or three glomeruli, as in adults. Slight but significant rostral shifts in (+)glomerular location occur with development. The 2A4(+)ORN immunoreactivity was found to be due to expression of HSP70, the dominant stress-inducible member of the HSP70 family, rather than constitutively expressed HSC70. In addition, despite their presence in rat OE, no 2A4(+)ORNs were found in mice, gerbils, guinea pigs, or hamsters.  相似文献   

19.
Administration of recombinant interleukin 12 (IL-12) induces tumor regression that is associated with T-cell infiltration in the OV-HM ovarian carcinoma and CSA1M fibrosarcoma models. After confirming the blocking of regression by injection of anti-IFN-gamma monoclonal antibody (mAb), we investigated the mechanisms underlying the requirement of IFN-gamma in T-cell migration and tumor regression. T-cell migration was inhibited by injection of anti-IFN-gamma mAb to OV-HM tumor-bearing mice prior to IL-12 treatment. We examined, using the lymphoid cell migration assay, whether IFN-gamma is required for enhancing the migratory capacity of T cells or the T cell-accepting potential of tumor masses during IL-12 treatment. Spleen cells from IL-12-treated or untreated OV-HM-bearing mice were stained in vitro with a fluorescein chemical and transferred i.v. into OV-HM-bearing mice that were not treated with IL-12. Migration of donor cells was quantitated by counting the number of fluorescent cells on cryostat sections of tumor masses from recipient mice. Compared to spleen cells from OV-HM-bearing mice that were not treated with IL-12, enhanced migration was observed for cells from IL-12-treated OV-HM-bearing mice. Anti-IFN-gamma pretreatment of donor mice before IL-12 treatment did not reduce the migratory capacity of T cells, whereas migration was markedly inhibited in recipient mice injected with anti-IFN-gamma. Anti-IFN-gamma pretreatment decreased vascular cell adhesion molecule-1 (VCAM-1)-/intercellular adhesion molecule-1 (ICAM-1)-positive blood vessels at tumor sites. Consistent with this, migration was also inhibited by treatment of recipient mice with either anti-VCAM-1 or anti-ICAM-1 mAb. In contrast to the OV-HM model, T-cell migration was not affected in the CSA1M model following preinjection of anti-IFN-gamma mAb. In this model, VCAM-1-/ICAM-1-positive blood vessels existed even after anti-IFN-gamma treatment, although tumor regression was completely inhibited. These results indicate that IFN-gamma plays two distinct roles in expressing the antitumor efficacy of IL-12: one is to support the T-cell acceptability of tumor masses, and the other is to mediate the antitumor effects of migrated T cells.  相似文献   

20.
When a rat navigates through space, head direction (HD) cells provide an ongoing signal of the rat's directional heading. It is thought that these cells rely, in part, on angular path integration of the rat's head movements. This integration requires that the HD cell system receive information about angular head movements and that this information be combined with the current directional signal, to generate the next "predicted" direction. Recent data suggest that the dorsal tegmental nucleus (DTN) may play a critical role in helping to generate the HD cell signal. To test this, recordings were made from cells in the DTN in freely moving rats. The following cell types were found: (a) "classic" HD cells, (b) angular velocity cells, and (c) cells that fired as a function of both head direction and angular velocity. Thus, DTN cells exhibit firing characteristics that are critical to the neural circuit hypothesized for generation of the HD cell signal. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号