首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Yb:Y3Al5O12 (Yb:YAG) single crystals with Yb doping concentration 0.5 at.%, 5 at.%, 15 at.%, 25 at.%, 50 at.%, 100 at.% and Yb:YAlO3 (Yb:YAP) single crystals with Yb doping concentration 0.5 at.%, 5 at.%, 15 at.%, 30 at.% were grown by the Czochralski process. The fluorescence spectra of these crystals and the effects of self-absorption on the shape of the fluorescence spectra were studied. Through comparing the fluorescence spectra of Yb:YAG and Yb:YAP, all results indicate that the effects of self-absorption on the fluorescence spectra of Yb:YAP are remarkably stronger than that of Yb:YAG at the same Yb concentration.  相似文献   

2.
A new class of scintillators based on charge-transfer luminescence of the Yb3+ ion is being investigated for the last few years. The main prospect for these scintillators is in neutrino physics. The crystals manifest maximum light output at temperatures 100 K<T<150 K. In this range Large Area Avalanche Photodiodes (LAAPD) are the best photodetectors. In this work Yb(25%):YAG and Yb(5%):YAP scintillators were characterized by means of a 16 mm diameter API LAAPD at temperatures around 100 K. Light yield and energy resolution were determined. Light yield non-proportionality was detected for all the crystals comparing light output at 661.6 and 59.6 keV peaks.  相似文献   

3.
《Optical Materials》2008,30(12):1741-1745
Single crystal of Yb:GdYAl3(BO3)4(Yb:GdYAB) has been grown by the flux method. The structure of Yb:GdYAB crystal has been determined by X-ray diffraction analysis. The experiment show that the crystal has the same structure as that of YAl3(BO3)4 crystal and its unit cell constants have been measured to be a = 9.30146 Å, c = 7.24164 Å, Vol = 542.59 Å3. The absorption and fluorescence spectrum of Yb:GdYAl3(BO3)4 crystal have also been measured at room temperature. In the absorption spectra, there are two absorption bands at 938 nm and 974 nm, respectively, which is suitable for InGaAs diode laser pumping. In the fluorescence spectra, there are two fluorescence peaks at 992 and 1040 nm. The thermal properties of Yb:GdYAl3(BO3)4 crystal have been studied for the first time. The thermal expansion coefficient along c-axis is almost 5.4 times larger than that along a-axis. The specific heat of the crystal has been measured to be 0.77 J/g °C at room temperature. The calculated thermal conductivity is 5.26 Wm−1 K−1 along a-direction.  相似文献   

4.
We report on a comprehensive spectroscopic and laser characterization of monoclinic Yb,Tm:KLu(WO4)2 crystals. Stimulated-emission cross-section spectra corresponding to the 3F4  3H6 transition of Tm3+ ions are determined. The radiative lifetime of the 3F4 state of Tm3+ ions is 0.82 ms. The maximum Yb3+  Tm3+ energy transfer efficiency is 83.9% for 5 at.% Yb – 8 at.% Tm doping. The fractional heat loading for Yb,Tm:KLu(WO4)2 is 0.45 ± 0.05. Using a hemispherical cavity and 5 at.% Yb – 6 at.% Tm doped crystal, a maximum CW power of 227 mW is achieved at 1.983–2.011 μm with a maximum slope efficiency η = 14%. In the microchip laser set-up, the highest slope efficiency is 20% for a 5 at.% Yb– 8 at.% Tm doped crystal with a maximum output power of 201 mW at 1.99–2.007 μm. Operation of Yb,Tm:KLu(WO4)2 as a vibronic laser emitting at 2.081–2.093 μm is also demonstrated.  相似文献   

5.
The luminescence and scintillation properties of SrI2:0.5%Yb2+ have been investigated. SrI2:Yb single crystals were grown by the vertical Bridgeman method from the melt. They showed a light yield of 38,400 ph/MeV and energy resolution of 12.5% for the 662 keV full absorption peak. Yb2+ photoluminescence intensity and decay time were studied between 78 and 600 K. Two emission bands centered at 418 and 446 nm were observed and ascribed to spin-allowed and spin-forbidden Yb2+ 5d-4f transitions, respectively. Their corresponding room-temperature decay time constants are 710 ns and 77 μs. Both, the emission intensities and the decay time constants vary with temperature. The obtained results were interpreted using a model of self-absorption of Yb2+ emission and a model of non-radiative relaxation of the electron from the low spin to the high spin 4f135d Yb2+ excited states. The radiative lifetime of the low spin Yb2+ excited state was determined as 400 ns.  相似文献   

6.
Scintillation properties of Pr3+-doped LuAG and YAG crystals were investigated and compared with those of Ce3+-doped ones. The highest L.Y.’s were observed with the longest shaping time 10 μs. They can reach up to ~16,000 ph/MeV or ~23,500 ph/MeV for LuAG:Pr and LuAG:Ce, respectively. Energy resolutions (FWHM) are a bit better with LuAG:Pr than those of LuAG:Ce, e.g. at 662 keV FWHM are around 6% and between 8–12%, respectively. There were observed no large changes in proportionality of Pr3+- or Ce3+-doped LuAG or YAG crystals but the best proportionality has YAP:Ce crystal. Pr3+- or Ce3+-doped LuAG crystals exhibit slow decay components in the time range 1.5–3.5 μs while those of YAG ones have shorter decay components between 0.3–1.7 μs.  相似文献   

7.
A series of Ru:Fe:LiNbO3 crystals with various doping concentrations of HfO2 were grown by the Czochralski technique. Their defect structures were analyzed by the infrared absorption spectra and the Lorentzian fitting. The one-color holographic storage characteristics of these crystals were investigated by means of two-wavelength technology. The experimental results showed that fast response time of 12.7 s and high one-color holographic recording sensitivity of 0.53 cm/J were obtained in Hf(5 mol%):Ru:Fe:LiNbO3 crystal, meanwhile the fixed diffraction efficiency was as high as 44.3%. These results indicated Hf, Ru and Fe co-doped LiNbO3 crystals were outstanding media for holographic storage applications.  相似文献   

8.
8 at.% Yb:YAG plate single crystal with the dimension of 170 mm × 150 mm × 30 mm was grown in vacuum by Horizontal Directional Solidification method. Aimed at blue-green color centers, annealing treatments of 15 mm × 15 mm × 1 mm samples from 900 °C to 1400 °C for 5 h and at 900 °C from 5 h to 40 h in air were conducted. The absorption spectra, emission spectra, fluorescence lifetime and X-ray photoelectron spectroscopy of samples under different annealing conditions were measured at room temperature, respectively. Annealing at above 1000 °C for 5 h or at 900 °C for 40 h made the blue-green color centers disappear and the samples turned to transparent. Absorption coefficients decreased in the 300 nm–800 nm wavelength range, emission intensities increased and emission bands broadened around 486 nm and 1029 nm with increasing temperature up to 1200 °C, then varied inversely. These values decreased or increased monotonically with increasing annealing time at 900 °C. The maximal increases of fluorescence lifetime were 62.3% and 64.7%, respectively. The calculated emission cross section of 1200 °C for 5 h was up to 4.4 × 10−20 cm2. In X-ray photoelectron spectroscopy, the concentrations of oxygen vacancies reduced from 1.28% down to absence by annealing. These experiments show that color centers are detrimental to the optical properties of HDS-Yb:YAG laser crystal and optimal annealing treatments should be conducted.  相似文献   

9.
Eu2O3 doped Y3Al5O12 (YAG) crystals have been grown using a floating zone technique and evaluated thermal stability and annealing behavior of PL for a fluorescence thermo-sensor application. Color of the crystals grown varies from deep purple to colorless with O2 concentration of the growth atmosphere and annealing in air. Photoluminescence (PL) peaking at λ = 590, 607, 624, 647 and 709 nm due to Eu3+ ions are observed from the crystals under UV excitation. Anomalous temperature dependence of PL intensity, which is observed in as-grown crystals, is improved greatly by annealing through the heat cycle. From annealing behavior of optical absorption spectra, residual Eu2+ ions are suggested to be responsible for the de-coloration and the improvement of anomalous temperature dependence of Eu doped YAG crystals.  相似文献   

10.
《Optical Materials》2014,36(12):2314-2319
Undoped and Er3+-doped Sr3Yb2(BO3)4 crystals were grown by the Czochralski method. Room temperature polarized spectral properties of the Er:Sr3Yb2(BO3)4 crystal were investigated. The efficiency of the energy transfer from Yb3+ to Er3+ ions in this crystal was calculated to be about 95%. End-pumped by a diode laser at 970 nm in a hemispherical cavity, a 0.75 W quasi-CW laser at 1.5–1.6 μm with a slope efficiency of 7% and an absorbed pump threshold of 3.8 W was achieved in a 0.5-mm-thick Z-cut crystal glued on a 5-mm-thick pure YAG crystal with UV-curable adhesive.  相似文献   

11.
《Optical Materials》2005,27(3):625-633
Er3+-doped La2(WO4)3 single crystals were grown by the Czochralski technique. The absorption spectra, fluorescence spectra and fluorescence decay curves of the crystals were measured at room temperature. The spectroscopic parameters, including intensity parameters Ωt (t = 2, 4, 6), spontaneous emission probability, fluorescence branching ratio, radiative lifetime, and stimulated emission cross-section were estimated. The fluorescence decay curves of fluorescence manifolds 4I13/2, 4I11/2, and 4S3/2 were measured for crystal and powder samples, respectively. The effect of radiation trapping on the spectroscopic parameters was discussed. Green up-conversion fluorescence bands centered at wavelengths of 530 nm and 550 nm were observed when the crystal was excited at 977 nm. The possible up-conversion mechanisms were proposed.  相似文献   

12.
The influence of Yb3+ content on structural evolution and fluorescence properties of oxyfluoride glass ceramics containing LaF3 nano-crystals were systematically investigated. Differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) experiments indicated that Yb3+ ions acted as nucleating agent to facilitate LaF3 crystallization. X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) results verified the incorporation of Yb3+ into LaF3 nano-crystal lattice. The absorption, emission spectra and fluorescence decays were measured. The infrared emission intensity of 4F5/2  4F7/2 transition under 980 nm excitation enhanced, while the measured lifetime reduced due to the increase of non-radiative transition probability, with the increase of Yb3+ content in glass ceramic. However, when Yb3+ doping reached 4.0 mol% the concentration quenching effect appeared.  相似文献   

13.
《Optical Materials》2005,27(3):475-479
Optical spectroscopy of the green emission of erbium in KGd(WO4)2 (KGW) single crystals codoped with ytterbium ions is investigated. To do this, we firstly grew good-optical-quality KGW single crystals doped with Er3+ and Yb3+ at several dopant concentrations by the Top-seeded-solution-growth slow-cooling method (TSSG). Green photoluminescence of Er3+ in KGW host was studied at room temperature (RT) and low temperature (10 K) by means of Yb3+ sensitization after infrared excitation at 981 nm (10194 cm−1). We calculated the emission and gain cross-sections and compared these with those of other known Er3+-doped laser materials like LiYF4 :Er (YLF:Er) and Y3Al5O12:Er (YAG:Er) at RT. Our study also focused on determining the optimal concentration of ions for generating the most intense green emission. We measured the lifetime of the green emission after infrared pump at several Yb3+ concentrations. From the low-temperature emission experiments, we determined the energy position of the sublevels of the ground state of erbium.  相似文献   

14.
Yb:YAG transparent ceramics with different doping concentration were fabricated by the traditional solid-state diffusion route, and their fluorescence properties and laser behavior were investigated. It is found that both the fluorescence intensity and lifetime depend deeply on both the doping concentration of Yb ions and the annealing treatment. The continuous wavelength (C.W.) laser performance for 10 at.% Yb:YAG ceramic suggests that both the threshold pump power and slope efficiency increase with increasing transmittance of the output couple (Toc). For Toc = 15%, the threshold pump power is about 6.1 W, the slope efficiency is 25%, and the maximum output power of 2.2 W is achieved when pumped by 14.9 W.  相似文献   

15.
采用提拉法生长了原子分数为10%的Yb和不同掺杂浓度Cr的Cr,Yb:YAG激光晶体.测试了室温下晶体的吸收光谱、荧光光谱和荧光寿命.随着晶体中Cr离子掺杂浓度的增加,晶体在1.03μm处的吸收系数增大、荧光强度和荧光寿命下降,同时Yb3+→Cr4+能量转移效率增加、量子效率降低.确定了Cr,Yb:YAG晶体中Cr的最佳浓度值.  相似文献   

16.
An efficient acousto-optic Q-switched Yb-doped Gd3AlxGa5−xO12 (GAGG) (x = 0.5) laser is demonstrated. Under the absorbed pump power of 7.4 W, the maximum average output power of 1.4 W is obtained at the pulse repletion rate of 1 kHz , with the slope efficiency as high as 32%. The pulse width of 40 ns is achieved with the pulse energy and peak power of 1.4 mJ and 35 kW, respectively. What’ more, the output spectrum shows itself tri-wavelength in either CW or Q-switching mode. To our knowledge, this is the first time for realizing simultaneous tri-wavelength Yb:GAGG laser actively Q-switched operation.  相似文献   

17.
Highly uniform SrF2 and SrF2:Ln3+ (Ln = Er, Nd, Yb, Eu, Tb) hierarchical microspheres assembled by 2D nanoplates have been successfully synthesized by a facile and friendly hydrothermal route. X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectra were used to characterize the samples. The experimental results indicate that reaction time and chelating reagent play a key role in forming the hierarchical microspheres. The formation mechanism was proposed based on the evolution of this morphology as a function of hydrothermal time. The near-infrared luminescence of lanthanide ions (Er, Nd, and Yb) doped SrF2 microspheres were discussed in detail. In addition, the as-obtained SrF2:Eu3+ sample exhibits orange-red emission centered at 590 nm under excitation at 393 nm, while the SrF2:Tb3+ exhibits a strong green emission at 540 nm. The as-synthesized SrF2:Ln3+ luminescent microspheres might find some potential applications in areas of photoluminescence, telecommunication and laser emission.  相似文献   

18.
Up-converting NaYF4:Yb3+,Er3+ (xYb: 0.20, xEr: 0.02) nanomaterials were prepared with a microwave assisted solvothermal synthesis to study how the synthesis parameters affect the structure and up-conversion luminescence of the materials and thus their usability as labels in biomedical applications. The purity of the materials was studied with Fourier transform infra-red (FT-IR) spectroscopy and the particle size and morphology with transmission electron microscopy (TEM). The crystal structure was characterized with X-ray powder diffraction (XPD) and the crystallite sizes were calculated with the Scherrer formula. Up-conversion luminescence and luminescence decays were studied with near infra-red (NIR) laser excitation at 970 nm.The presence of the oleic acid was observed in the FT-IR spectra. The TEM images showed small quasi-spherical nanoparticles as well as long nanorods. The XPD measurements revealed that both cubic and hexagonal forms of NaYF4 were present in the materials. The crystallite sizes ranged from ca. 20 to over 150 nm for the cubic and hexagonal phases, respectively. The characteristic up-conversion luminescence of Er3+ in red (640–685 nm; 4F9/2  4I15/2) and green (515–560 nm; 2H11/2, 4S3/2  4I15/2 transitions) wavelengths was observed. The most intense luminescence and the longest luminescence emission lifetime were obtained with the material annealed for 12 h at 177 °C with 1.8 MPa pressure due to the predominance of the well-crystallized hexagonal form of NaRF4 (R: Y, Yb, Er).  相似文献   

19.
《Optical Materials》2007,29(12):1344-1349
The Yb:Er co-doped Al2O3 thin film was deposited on oxidized silicon wafers by microwave ECR plasma source enhanced RF magnetron sputtering, and annealed from 800 °C to 1000 °C. The photoluminescence at 1.53 μm of thin film was obtained under room temperature. The mixture phase structure of γ and θ is observed by XRD, and the compositions of the thin film are investigated by EPMA. The maximum PL intensity was achieved with O2:Ar at 1:1, annealing temperature at 900 °C, and experimental ratio of Yb:Er at 1:3.6. The energy transfer mechanism between Er and Yb ions is supported by theoretical analysis and experiment results.  相似文献   

20.
In this paper we present the investigation of the energy transfer efficiency between Tb3+ and Yb3+ ions in silica–hafnia waveguides. Cooperative energy transfer between these two ions allows to cut one 488 nm photon in two 980 nm photons and could have important applications in improving the performance of photovoltaic solar cells. Previous works revealed that for a given concentration of donors (Tb3+), increasing the number of acceptors (Yb3+) located near to the Tb3+ ion can increase the Tb–Yb transfer probability. However, when increasing the density of active ions, some detrimental effects due to cross-relaxation mechanisms become relevant. On the basis of this observation the sample doping was chosen keeping constant the molar ratio [Yb]/[Tb] = 4 and the total rare earths contents were [Tb + Yb]/[Si + Hf] = 5%, 7%, 9%. The choice of the matrix is another crucial point to obtain an efficient down conversion processes with rare earth ions. To this respect a 70SiO2–30HfO2 waveguide composition was chosen. The comparison between the glass and the glass–ceramic structures demonstrated that the latter is more efficient since it combines the good optical properties of glasses with the optimal spectroscopic properties of crystals activated by luminescent species. A maximum transfer efficiency of 55% was found for the highest rare earth doping concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号