首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Built-in Self Test Based on Multiple On-Chip Signature Checking   总被引:1,自引:0,他引:1  
We propose an improved BIST architecture which supports on-chip comparison of signatures at no significant increase in area. The proposed test architecture reduces detection latency and eliminates the lengthy scan-out phase from each test session by allowing testing and on-chip signature comparison of multiple intermediate signatures to occur concurrently. The work is based on a novel procedure to implement the multiple on-chip signature checking. We show that such a test method gives significant improvements in test application time and aliasing probability. This paper also presented two techniques to minimize the test area overhead with a very small test time overhead compare to the conventional schemes. These techniques resulted in up to 80% savings in test area overhead for some High-level synthesis benchmark circuits. This paper also presents an aliasing analysis of the proposed scheme.  相似文献   

2.
提出了一种新的测试数据压缩/解压缩的算法,称为混合游程编码,它充分考虑了测试数据的压缩率、相应硬件解码电路的开销以及总的测试时间.该算法是基于变长-变长的编码方式,即把不同游程长度的字串映射成不同长度的代码字,可以得到一个很好的压缩率.同时为了进一步提高压缩率,还提出了一种不确定位填充方法和测试向量的排序算法,在编码压缩前对测试数据进行相应的预处理.另外,混合游程编码的研究过程中充分考虑到了硬件解码电路的设计,可以使硬件开销尽可能小,并减少总的测试时间.最后,ISCAS 89 benchmark电路的实验结果证明了所提算法的有效性.  相似文献   

3.
An Efficient Test Data Compression Technique Based on Codes   总被引:1,自引:1,他引:0  
提出了一种新的测试数据压缩/解压缩的算法,称为混合游程编码,它充分考虑了测试数据的压缩率、相应硬件解码电路的开销以及总的测试时间.该算法是基于变长-变长的编码方式,即把不同游程长度的字串映射成不同长度的代码字,可以得到一个很好的压缩率.同时为了进一步提高压缩率,还提出了一种不确定位填充方法和测试向量的排序算法,在编码压缩前对测试数据进行相应的预处理.另外,混合游程编码的研究过程中充分考虑到了硬件解码电路的设计,可以使硬件开销尽可能小,并减少总的测试时间.最后,ISCAS 89 benchmark电路的实验结果证明了所提算法的有效性.  相似文献   

4.
The test vector compression is a key technique to reduce IC test time and cost since the explosion of the test data of system on chip (SoC) in recent years. To reduce the bandwidth requirement between the automatic test equipment (ATE) and the CUT (circuit under test) effectively, a novel VSPTIDR (variable shifting prefix-tail identifier reverse) code for test stimulus data compression is designed. The encoding scheme is defined and analyzed in detail, and the decoder is presented and discussed. While the probability of 0 bits in the test set is greater than 0.92, the compression ratio from VSPTIDR code is better than the frequency-directed run-length (FDR) code, which can be proved by theoretical analysis and experiments. And the on-chip area overhead of VSPTIDR decoder is about 15.75 % less than the FDR decoder.  相似文献   

5.
提出了一种有效的新型测试数据压缩编码——PTIDR编码。该编码方法综合利用哈夫曼编码和前缀编码。理论分析和实验结果表明,在测试集中,0的概率p满足p≥0.7610时,能取得比FDR编码更高的压缩率,从而降低芯片测试成本。该编码方法的解码器也较FDR编码的解码器简单、易实现,且能有效节省硬件开销,并进一步节省芯片面积,从而降低芯片制造成本。  相似文献   

6.
We present an analysis of test application time for test data compression techniques that are used for reducing test data volume and testing time in system-on-a-chip (SOC) designs. These techniques are based on data compression codes and on-chip decompression. The compression/decompression scheme decreases test data volume and the amount of data that has to be transported from the tester to the SOC. We show via analysis as well as through experiments that the proposed scheme reduces testing time and allows the use of a slower tester. Results on test application time for the ISCAS'89 circuits are obtained using an ATE testbench developed in VHDL to emulate ATE functionality.  相似文献   

7.
提出了一种基于片上微处理器和透明路径测试访问的SOC自测试方案。以片上微处理器为测试加载和响应收集比较的主体,构造透明路径并行传输测试数据,以嵌入程序控制测试过程。可以在提高测试速度的同时,降低对测试设备性能的依赖,并可以进行全速测试,所需额外面积开销较小。实验表明,该测试方案是有效的。  相似文献   

8.
 由于多扫描链测试方案能够提高测试进度,更适合大规模集成电路的测试,因此提出了一种应用于多扫描链的测试数据压缩方案.该方案引入循环移位处理模式,动态调整向量,能够保留向量中无关位,增加向量的外延,从而提高向量间的相容性和反向相容性;同时,该方案还能够采用一种有效的参考向量更替技术,进一步提高向量间的相关性,减少编码位数.另外,该方案能够利用已有的移位寄存器,减少不必要的硬件开销.实验结果表明所提方案在保持多扫描链测试优势的前提下能够进一步提高测试数据压缩率,满足确定性测试和混合内建自测试.  相似文献   

9.
A mixed-mode file compression scheme that incorporates interval encoding for finding duplicate occurrences of strings without storing or parsing the past sequence and a one-pass scheme for dynamic Huffman codes is presented. Results from experiments performed on various types of files are discussed. The proposed method runs in linear time, and the memory requirement depends only on the alphabet size. The code efficiency is compared experimentally to that of other schemes  相似文献   

10.
This paper presents a code compression and on-the-fly decompression scheme suitable for coarse-grain reconfigurable technologies. These systems pose further challenges by having an order of magnitude higher memory requirement due to much wider instruction words than typical VLIW/TTA architectures. Current compression schemes are evaluated. A highly efficient and novel dictionary-based lossless compression technique is implemented and compared against a previous implementation for a reconfigurable system. This paper looks at several conflicting design parameters, such as the compression ratio, silicon area, latency, and power consumption. Compression ratios in the range of 0.32 to 0.44 are recorded with the proposed scheme for a given set of test programs. With these test programs, a 60% overall silicon area saving is achieved, even after the decompressor hardware overhead is taken into account. The proposed technique may be applied to any architecture which exhibits common characteristics to the example reconfigurable architecture targeted in this paper.   相似文献   

11.
Synchronization overhead in SOC compressed test   总被引:1,自引:0,他引:1  
Test data compression is an enabling technology for low-cost test. Compression schemes however, require communication between the system under test and the automated test equipment. This communication, referred to in this paper as synchronization overhead, may hinder the effective deployment of this new test technology for core-based systems-on-chip. This paper analyzes the sources of synchronization overhead and discusses the different tradeoffs, such as area overhead, test time and automatic test equipment extensions. A novel scalable and programmable on-chip distribution architecture is proposed, which addresses the synchronization overhead problem and facilitates the use of low cost testers for manufacturing test. The design of the proposed architecture is introduced in a generic framework, and the implementation issues (including the test controller and test set preparation) have been considered for a particular case.  相似文献   

12.
In this paper, we present two multistage compression techniques to reduce the test data volume in scan test applications. We have proposed two encoding schemes namely alternating frequency-directed equal-run-length (AFDER) coding and run-length based Huffman coding (RLHC). These encoding schemes together with the nine-coded compression technique enhance the test data compression ratio. In the first stage, the pre-generated test cubes with unspecified bits are encoded using the nine-coded compression scheme. Later, the proposed encoding schemes exploit the properties of compressed data to enhance the test data compression. This multistage compression is effective especially when the percentage of do not cares in a test set is very high. We also present the simple decoder architecture to decode the original data. The experimental results obtained from ISCAS'89 benchmark circuits confirm the average compression ratio of 74.2% and 77.5% with the proposed 9C-AFDER and 9C-RLHC schemes respectively.  相似文献   

13.
The random-like filling strategy pursuing high compression for today's popular test compression schemes introduces large test power. To achieve high compression in conjunction with reducing test power for multiple-scan-chain designs is even harder and very few works were dedicated to solve this problem. This paper proposes and demonstrates a multilayer data copy (MDC) scheme for test compression as well as test power reduction for multiple-scan-chain designs. The scheme utilizes a decoding buffer, which supports fast loading using previous loaded data, to achieve test data compression and test power reduction at the same time. The scheme can be applied automatic test pattern generation (ATPG)-independently or to be incorporated in an ATPG to generate highly compressible and power efficient test sets. Experiment results on benchmarks show that test sets generated by the scheme had large compression and power saving with only a small area design overhead.  相似文献   

14.
In this article, a run length encoding-based test data compression technique has been addressed. The scheme performs Huffman coding on different parts of the test data file separately. It has been observed that up to a 6% improvement in compression ratio and a 29% improvement in test application time can be achieved sacrificing only about 6.5% of the decoder area. We have compared our results with the other contemporary works reported in the literature. It has been observed that for most of the cases, our scheme produces a better compression ratio and that the area requirements are much less.  相似文献   

15.
In many image sequence compression applications, Huffman coding is used to eliminate statistical redundancy resident in given data. The Huffman table is often pre-defined to reduce coding delay and table transmission overhead. Local symbol statistics, however, may be much different from the global ones manifested in the pre-defined table. In this paper, we propose three Huffman coding methods in which pre-defined codebooks are effectively manipulated according to local symbol statistics. The first proposed method dynamically modifies the symbol-codeword association without rebuilding the Huffman tree itself. The encoder and decoder maintain identical symbol-codeword association by performing the same modifications to the Huffman table, thus eliminating extra transmission overhead. The second method adaptively selects a codebook from a set of given ones, which produces the minimum number of bits. The transmission overhead in this method is the codebook selection information, which is observed to be negligible compared with the bit saving attained. Finally, we combine the two aforementioned methods to further improve compression efficiency. Experiments are carried out using five test image sequences to demonstrate the compression performance of the proposed methods.  相似文献   

16.
To overcome the limitation of the automatic test equipment (ATE), test data compression/decompression schemes become a more important issue of testing for a system-on-chip (SoC). In order to alleviate the limitation of previous works, a new hybrid test data compression/decompression scheme for an SoC is developed. The new scheme is based on analyzing the factors that influence test parameters: compression ratio and hardware overhead. To improve compression ratio, the proposed scheme, called the Modified Input reduction and CompRessing One block (MICRO), uses the modified input reduction, the one block compression, a novel mapping, and reordering algorithms. Unlike previous approaches using the cyclic scan register architecture, the proposed scheme is to compress original test data and to decompress the compressed test data without the cyclic scan register architecture. Therefore, the proposed scheme leads to high-compression ratio with low-hardware overhead. Experimental results on ISCAS '89 and ITC '99 benchmark circuits prove the efficiency of the new method.  相似文献   

17.
A power efficient System-on-a-Chip test data compression method using alternating statistical run-length coding is proposed. To effectively reduce test power dissipation, the test set is firstly preprocessed by 2D reordering scheme. To further improve the compression ratio, 4 m partitioning of the runs and a smart filling of the don’t care bits provide the nice results, and alternating statistical run-length coding scheme is developed to encode the preprocessed test set. In addition, a simple decoder is obtained which consumed a little area overhead. The benchmark circuits verify the proposed power efficient coding method well. Experimental results show it obtains a high compression ratio, low scan-in test power dissipation and little extra area overhead during System-on-a-Chip scan testing.  相似文献   

18.
A new scheme of test data compression based on run-length, namely equal-run-length coding (ERLC) is presented. It is based on both types of runs of 0's and 1's and explores the relationship between two consecutive runs. It uses a shorter codeword to represent the whole second run of two equal length consecutive runs. A scheme for filling the don't-care bits is proposed to maximize the number of consecutive equal-length runs. Compared with other already known schemes, the proposed scheme achieves higher compression ratio with low area overhead. The merits of the proposed algorithm are experimentally verified on the larger examples of the ISCAS89 benchmark circuits.  相似文献   

19.
应用混合游程编码的SOC测试数据压缩方法   总被引:10,自引:1,他引:9       下载免费PDF全文
方建平  郝跃  刘红侠  李康 《电子学报》2005,33(11):1973-1977
本文提出了一种有效的基于游程编码的测试数据压缩/解压缩的算法:混合游程编码,它具有压缩率高和相应解码电路硬件开销小的突出特点.另外,由于编码算法的压缩率和测试数据中不确定位的填充策略有很大的关系,所以为了进一步提高测试压缩编码效率,本文还提出一种不确定位的迭代排序填充算法.理论分析和对部分ISCAS 89 benchmark电路的实验结果证明了混合游程编码和迭代排序填充算法的有效性.  相似文献   

20.
Recent test data compression techniques raise concerns regarding power dissipation and compression efficiency. This letter proposes a new test data compression scheme, twin symbol encoding, that supports block division skills that can reduce hardware overhead. Our experimental results show that the proposed technique achieves both a high compression ratio and low‐power dissipation. Therefore, the proposed scheme is an attractive solution for efficient test data compression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号