共查询到17条相似文献,搜索用时 46 毫秒
1.
针对嵌入式系统软硬件划分问题;在比较了遗传算法(GA)和模拟退火(SA)各自优缺点的基础上;提出了采用遗传/模拟退火混合算法(GASA)的策略。该算法的核心思想是将模拟退火算法嵌入到遗传算法中;利用遗传优化算法的结果来制约模拟退火的随机状态产生;然后根据模拟退火算法的接受准则和随机状态产生函数来更新遗传算法的种群;从而最终得到最优解。与单纯的遗传算法和模拟退火算法进行对比实验;实验结果表明;GASA更有优势;得到的划分结果也更优秀。 相似文献
2.
3.
软硬件划分是嵌入式系统软硬件协同设计中的关键技术之一,如何兼顾系统的性能和成本,达到两者的最佳结合,是软硬件划分的主要问题.针对单CPU多ASICs类型的目标结构,选取了遗传算法、禁忌搜索算法和模拟退火算法等全局优化算法进行系统的软硬件划分,并对3种算法的有效性进行了比较分析. 相似文献
4.
针对装配线平衡问题(ALBP),文中提出了一种禁忌搜索遗传混合算法。在混合算法中,遗传算法部分采用特殊的遗传变异操作算子(双点交叉和移位插入变异),使算法只在可行作业序列子空间中进行搜索,有效减小了搜索范围,提高了算法运行效率;禁忌搜索部分是在每代遗传操作完成以后,随机选择一些个体进行禁忌搜索操作,来增强算法的搜索能力。最后以经典问题的求解验证了禁忌搜索遗传算法在收敛性能和计算效率上较使用单纯的遗传算法高。 相似文献
5.
一种嵌入式系统软硬件划分算法 总被引:2,自引:0,他引:2
软硬件划分是嵌入式系统软硬件协同设计中的一个关键问题.传统划分算法具有局部最优,收敛速度慢的缺陷.为使组成系统性能达到最优化,提出一种新的嵌入式系统软硬件划分算法.先采用嵌入式系统转化成有向无环图,可将嵌入式系统软硬件划分问题转换成一个多条件约束问题,用蚂蚁放置于有向无环图顶点上,对系统软硬件的划分准确率作为蚁群算法优化目标,通过蚁群算法搜索最优目标函数值,有效避免传统划分算法搜索陷入局部最小,大幅度降低搜索时间.实验结果表明,采用蚁群算法能够高效、快速获得准确地划分结果,为嵌入式系统设计提供了依据. 相似文献
6.
基于禁忌搜索遗传混合算法的装配线平衡 总被引:2,自引:0,他引:2
针对装配线平衡问题(ALBP),文中提出了一种禁忌搜索遗传混合算法.在混合算法中,遗传算法部分采用特殊的遗传变异操作算子(双点交叉和移位插入变异),使算法只在可行作业序列子空间中进行搜索,有效减小了搜索范围,提高了算法运行效率;禁忌搜索部分是在每代遗传操作完成以后,随机选择一些个体进行禁忌搜索操作,来增强算法的搜索能力.最后以经典问题的求解验证了禁忌搜索遗传算法在收敛性能和计算效率上较使用单纯的遗传算法高. 相似文献
7.
软硬件划分是软硬件协同设计的关键环节,它决定系统中哪些组件由软件实现,哪些由硬件实现。软硬件划分问题已被证明是NP完全问题。将一类软硬件划分问题看作变异的0-1背包问题,在求解背包问题的算法基础上构造出软硬件划分问题的优质启发解。此外,采用禁忌搜索(Tabu Search)算法对求得的启发解进行改进,在软件开销和通信开销满足一定约束的条件下,使得硬件开销尽可能小。实验结果证明,所提算法对当前最新算法的改进最大可达到28%。 相似文献
8.
9.
将禁忌搜索和遗传算法相结合,给出了一种求解优化问题的混合策略--禁忌遗传优化算法.该算法一方面为禁忌搜索找到了较好的初始点,减少了调用禁忌搜索的次数,另一方面也可以克服遗传算法爬山能力差的缺点,从而加快了收敛速度,提高了解的质量.通过实例验证了该优化算法的有效性和可靠性,并将其用于网络拥塞控制的研究中,为进一步实施网络拥塞控制提供了一种有效的途径. 相似文献
10.
基于遗传粒子群优化的嵌入式系统软硬件划分算法 总被引:1,自引:0,他引:1
针对单处理器嵌入式系统软硬件划分问题,采用带权有向无环图进行建模,并将之约简,进而转换为多约束条件的0/1背包问题求解.由于基本粒子群优化算法无法求解0/1背包问题,故将遗传算法中的交叉、变异思想引入粒子群优化算法,提出了求解离散组合优化问题的遗传粒子群优化(GPSO)算法,采用两点交叉算子和非均匀变异算子对粒子的位置和速度更新方法进行了重新定义.实验结果表明,采用文中算法能有效地解决软硬件划分问题,具有良好的全局搜索能力,其寻优能力和执行时间优于遗传算法和模拟退火算法. 相似文献
11.
面向嵌入式系统和SoC(system-on-a-chip)软硬件双路划分问题,提出遗传算法与蚂蚁算法动态融合的软硬件划分算法.基本思想是:(1)利用遗传算法群体性、全局、随机、快速搜索的优势生成初始划分解,将其转化为蚂蚁算法所需的初始信息素分布,然后利用蚂蚁算法正反馈、高效6收敛的优势求取最优划分解;(2)在遗传算法运行过程中动态确定遗传算法与蚂蚁算法的最佳融合时机,避免由于遗传算法过早或过晚结束而影响划分算法的整体性能.该算法既发挥了遗传算法与蚂蚁算法在寻优搜索中各自的优势,又克服了遗传算法在搜索到一定阶段时最优解搜索效率低以及蚂蚁算法初始信息素匮乏的不足,并且在算法中提出了遗传算法与蚂蚁算法动态融合的衔接策略.实验结果表明,该算法在性能上明显优于遗传算法和蚂蚁算法,并且划分问题规模越大,优势越明显. 相似文献
12.
嵌入式系统软硬件划分方法探索 总被引:1,自引:0,他引:1
提出了克隆选择算法在软硬件划分中的应用,讨论了目标函数、系统约束、抗体编码、克隆选择和变异等问题的处理。实验结果表明该算法具有较快的收敛速度,并获得了近似最优解。 相似文献
13.
针对嵌入式系统软硬件划分问题,在分析遗传算法和模拟退火算法的主要优缺点的基础上,提出了一种新的小生境技术改进的遗传模拟退火算法(NGSA),在遗传算法中融入模拟退火思想,同时引入小生境技术,保持群体的多样性;并采用Metropolis 法则形成新群体,改善群体的质量。实验结果证明该算法具有很强的爬山能力和全局搜索能力,与遗传算法(GA)和模拟退火算法(SA)相比适应度明显提高。 相似文献
14.
一种基于遗传算法的硬件/软件划分方法 总被引:5,自引:2,他引:5
文中采用相邻块通信划分模型及由单处理器和专用硬件构件组成的目标结构,解决了硬件约束条件下系统执行速度的优化问题,与贪心算法相比,该方法可在合理的时间内为嵌入式系统寻找到满意的解决方案。 相似文献
15.
狄金海 《计算机工程与应用》2009,45(26):65-67
引进细菌趋药性算法(BCA),用于嵌入式系统和片上系统的软硬件双路划分。BCA是一种新型的对细菌觅食行为进行模拟的优化算法。对不同节点的控制数据流图进行仿真,表明在同等条件下,BCA收敛时间低于模拟退火算法、禁忌搜索与蚁群算法,节点规模越大,优势越明显。当节点规模高达100时,BCA消耗时间仅有常用优化算法的40%~60%。 相似文献
16.
17.
近年来,随着信息领域的物联网、工业互联网、机器人等研究热点发展,嵌入式系统技术再次得到科技工作者和工程师的广泛关注和重视,同时嵌入式系统产品的集成度和性能要求越来越高.软硬件协同设计是开发嵌入式系统产品的重要方法之一,而软硬件划分是软硬件协同设计中的关键技术.本文对现有软硬件划分方法从不同层面进行梳理和分类,重点介绍几种常用的软硬件划分方法,并结合实例进行了详细阐述,最后对这几种方法进行综合比较,供嵌入式系统开发科技工作者和工程师参考. 相似文献