首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The accuracy of cutting force coefficients plays an important role in predicting reliable cutting force, stability lobes as well as surface location error in ball-end milling. In order to avoid chatter risk of the traditional calibration test with an entire-ball-immersed cutting depth, a cylindrical surface milling method is proposed to calibrate the cutting force coefficients with the characteristics of low cutting depth and varying lead angle. A dual-cubic-polynomial function is also presented to describe the non-uniform cutting force coefficients of the ball part cutting edge and the nonlinear chip size effect on cutting force. The variation of the maximum chip thickness versus the lead angle is established with the consideration of cutter runout. According to the dependence of chip thickness on lead angle, a runout identification method is introduced by seeking the critical lead angle at which one of the cutter flutes is just thoroughly out of cut. Then, a lumped equivalent method is adopted for the low cutting depth condition so that the dual-cubic-polynomial model can be calibrated for the chip size effect and the cutting force coefficients respectively. The accuracy of the proposed calibration method has been validated experimentally with a series of milling tests. The stability examinations indicate that the proposed method has an evident chatter-free advantage, compared with that of varying cutting depth method.  相似文献   

2.
This paper presents an analytical model for the direct identification of global shearing and ploughing cutting constants from measured average cutting forces in ball-end milling. This model is based on the linear decomposition of elemental local cutting forces into a shearing component and a ploughing component. Then, a convolution integral approach is used to obtain the average cutting forces leading to a concise and explicit expression for the global shearing and ploughing cutting constants in terms of axial depth of cut, cutter radius and average milling forces. The model is verified by comparisons with an existing force model of variable cutting coefficients. Cutting constants are identified through milling experiments and the prediction of cutting forces from identified cutting constants coincides with the experimental measurements. A model for identifying the lumped shearing constants is obtained as a subset of the presented dual mechanism model. Experimental results indicate that a model with dual-mechanism cutting constants predicts the ball-end milling forces with better accuracy than the lumped force model.  相似文献   

3.
Static rigid force model for 3-axis ball-end milling of sculptured surfaces   总被引:1,自引:1,他引:0  
Static rigid force model is used to estimate cutting forces of sculptured surface in a straightforward way, without considering tool deflection, machine tool dynamic behavior and any vibration effects. Two programs were used for calculations, “ACIS” the 3-D geometric modeler and “VISUAL BASIC”. Two programs were edited and used to perform the calculations, the scheme program to model the work piece, tool and cutting edge and to obtain the geometric data and the VISUAL BASIC program design to use ACIS geometric data to calculate the cutting forces. The engaged part of the cutting edge and work piece is divided into small differential oblique cutting edge segments. Friction, shear angles and shear stresses are identified from orthogonal cutting database available in literature. The cutting force components, for each tool rotational position, are calculated by summing up the differential cutting forces. Laboratory tests were conducted to verify the predictions of the model. The work pieces were prepared from CK45 steel using an insert-type ball-end cutter. No coolant was used in any of the experimental works. The cutting forces predicted have shown good agreement with experimental results.  相似文献   

4.
Cutting force prediction of sculptured surface ball-end milling using Z-map   总被引:7,自引:0,他引:7  
The cutting force in ball-end milling of sculptured surfaces is calculated. In sculptured surface machining, a simple method to determine the cutter contact area is necessary since cutting geometry is complicated and cutter contact area changes continuously. In this study, the cutter contact area is determined from the Z-map of the surface geometry and current cutter location. To determine cutting edge element engagement, the cutting edge elements are projected onto the cutter plane normal to the Z-axis and compared with the cutter contact area obtained from the Z-map. Cutting forces acting on the engaged cutting edge elements are calculated using an empirical method. Empirical cutting mechanism parameters are set as functions of cutting edge element position angle in order to consider the cutting action variation along the cutting edge. The relationship between undeformed chip geometry and the cutter feed inclination angle is also analyzed. The resultant cutting force is calculated by numerical integration of cutting forces acting on the engaged cutting edge elements. A series of experiments were performed to verify the proposed cutting force estimation model. It is shown that the proposed method predicts cutting force effectively for any geometry including sculptured surfaces with cusp marks and a hole.  相似文献   

5.
This paper presents a method to analyze the 3-dimensional form error of a ball-end milled surface due to the elastic compliance of the cutting tool. In order to estimate the form error in various cutting modes, the cutting force and the cutter deflection models including the effect of the surface inclination were established. The cutting forces were calculated by using the cutter contact area determined from the Z-map of the surface geometry and the current cutter location. The tool deflection responding to the cutting force was then calculated by considering the cutter and the holder stiffness. The cutter was modeled as a cantilever beam consisting of the shank and the flute. The stiffness of the holder was measured experimentally. Various experimental works have been performed to verify the validity of the proposed model. It is shown that the proposed method is capable of accurate prediction of cutting forces and the surface form error.  相似文献   

6.
This paper presents a predictive force model for ball-end milling based on thermomechanical modelling of oblique cutting. The tool geometry is decomposed into a series of axial elementary cutting edges. At any active tooth element, the chip formation is obtained from an oblique cutting process characterised by local undeformed chip section and local cutting angles. This method predicts accurately the cutting force distribution on the helical ball-end mill flutes from the tool geometry, the pre-form surface, the tool path, the cutting conditions, the material behaviour and the friction at the tool-chip interface. The model is applied for a complex surface which is a wavelike form used as a validation machining test. The results are compared with experimental data obtained from ball-end milling tests performed on a 3-axis CNC equipped with a Kistler dynamometer.  相似文献   

7.
Experimental studies of cutting force variation in face milling   总被引:4,自引:0,他引:4  
The purpose of this paper is to present a developed cutting force model for multi-toothed cutting processes, including a complete set of parameters influencing the cutting force variation that has been shown to occur in face milling, and to analyse to what extent these parameters influence the total cutting force variation for a selected tool geometry. The scope is to model and analyse the cutting forces for each individual tooth on the tool, to be able to draw conclusions about how the cutting action for an individual tooth is affected by its neighbours.A previously developed cutting force model for multi-toothed cutting processes is supplemented with three new parameters; eccentricity of the spindle, continuous cutting edge deterioration and load inflicted tool deflection influencing the cutting force variation. A previously developed milling force sensor is used to experimentally analyse the cutting force variation, and to give input to the cutting force simulation performed with the developed cutting force model.The experimental results from the case studied in this paper show that there are mainly three factors influencing the cutting force variation for a tool with new inserts. Radial and axial cutting edge position causes approximately 50% of the force variation for the case studied in this paper. Approximately 40% arises from eccentricity and the remaining 10% is the result of spindle deflection during machining. The experimental results presented in this paper show a new type of cutting force diagrams where the force variation for each individual tooth when two cutting edges are engaged in the workpiece at the same time. The wear studies performed shows a redistribution of the individual main cutting forces dependent on the wear propagation for each tooth.  相似文献   

8.
An analytical force model with both shearing and ploughing mechanisms is established for the end milling processes. The elemental forces are defined as the linear combination of shearing and ploughing forces in six cutting constants. The analytical model for the total milling forces in the angular and frequency domain are derived by convolution approach and Fourier transform respectively and are expressed as the superposition of the shearing force component and ploughing force component. This dual-mechanism model is analyzed and discussed in the frequency domain and compared with the lumped shear model. An expression is derived for identifying the cutting constants of the dual-mechanism model from the average milling forces. Explicit inclusion of ploughing force in the model is shown to result in better predictive accuracy and yields a linear force model with constant cutting coefficients. Experiments verify the accuracy and the frequency analysis of the dual-mechanism model and show that cutting constants for the dual-mechanism model are fairly independent of chip thickness.  相似文献   

9.
In CNC machining, an optimal process plan is needed for higher productivity and machining performance. This paper proposes a mechanistic cutting force model to perform feedrate scheduling that is useful in process planning for indexable end milling. Indexable end mills, which consist of inserts and a cutter body, have been widely used in the roughing of parts in the mold industry. The geometry and distribution of inserts compose a discontinuous cutting edge on the cutter body, and tool geometry of indexable end mill varies with axial position due to the geometry and distribution of inserts. Thus, an algorithm that calculates tool geometry data at an arbitrary axial position was developed. The developed cutting force model uses cutting-condition-independent cutting force coefficients and considers run out, cutter deflection, geometry variation and size effect for accurate cutting force prediction. Through feedrate scheduling, NC code is optimized to regulate cutting forces at given reference force. Experiments with general NC codes show the effectiveness of feedrate scheduling in process planning.  相似文献   

10.
This paper proposes an analytical approach to synchronize the measured and predicted cutting forces for calibrating instantaneous cutting force coefficients that vary with the instantaneous uncut chip thickness in general end milling. Essential issues such as the synchronization criterion, phase determination of measured cutting forces, specification of calibration experiments and related cutting parameters are highlighted both theoretically and numerically to ensure the calibration accuracy. A closed-form criterion is established to select cutting parameters ensuring the single tooth engagement. Numerical cutting simulations and experimental test results are compared to validate the proposed approach.  相似文献   

11.
In plunge milling operation the tool is fed in the direction of the spindle axis which has the highest structural rigidity, leading to the excess high cutting efficiency. Plunge milling operation is one of the most effective methods and widely used for mass material removal in rough/semi-rough process while machining high strength steel and heat-resistant-super-alloys. Cutting parameters selection plays great role in plunge milling process since the cutting force as well as the milling stability lobe is sensitive to the machining parameters. However, the intensive studies of this issue are insufficient by researchers and engineers. In this paper a new cutting model is developed to predict the plunge milling force based on the more precise plunge milling geometry. In this model, the step of cut as well as radial cutting width is taken into account for chip thickness calculation. Frequency domain method is employed to estimate the stability of the machining process. Based on the prediction of the cutting force and milling stability, we present a strategy to optimize the cutting parameters of plunge milling process. Cutting tests of heat-resistant-super-alloys with double inserts are conducted to validate the developed cutting force and cutting parameters optimization models.  相似文献   

12.
Chip thickness calculation has a key important effect on the prediction accuracy of accompanied cutting forces in milling process. This paper presents a mechanistic method for estimating cutting force in ball-end milling of sculptured surfaces for any cases of toolpaths and varying feedrate by incorporation into a new chip thickness model. Based on the given cutter location path and feedrate scheduling strategy, the trace modeling of the cutting edge used to determine the undeformed chip area is resulted from the relative part-tool motion in milling. Issues, such as the selection of the tooth tip and the computation of the preceding cutting path for the tooth tip, are also discussed in detail to ensure the accuracy of chip thickness calculation. Under different chip thicknesses cutting coefficients are regressed with good agreements to calibrated values. Validation tests are carried out on a sculptured surface with curved toolpaths under practical cutting conditions. Comparisons of simulated and experimental results show the effectiveness of the proposed method.  相似文献   

13.
This paper presents a mechanistic model for prediction of the thread milling forces. The mechanics of cutting for thread milling is analyzed similar to the end milling process but with modified cutting edge geometry. The chip thickness and cutting force models are developed considering the unique geometry of the tool. The model has been calibrated for 6061 Aluminum and validated. The effects of tool and thread geometry have been studied using the model.  相似文献   

14.
The majority of cutting force models applied for the ball end milling process includes only the influence of cutting parameters (e.g. feedrate, depth of cut, cutting speed) and estimates forces on the basis of coefficients calibrated during slot milling. Furthermore, the radial run out phenomenon is predominantly not considered in these models. However this approach can induce excessive force estimation errors, especially during finishing ball end milling of sculptured surfaces. In addition, most of cutting force models is formulated for the ball end milling process with axial depths of cut exceeding 0.5 mm and thus, they are not oriented directly to the finishing processes. Therefore, this paper proposes an accurate cutting force model applied for the finishing ball end milling, which includes also the influence of surface inclination and cutter's run out. As part of this work the new method of specific force coefficients calibration has been also developed. This approach is based on the calibration during ball end milling with various surface inclinations and the application of instantaneous force signals as an input data. Furthermore, the analysis of specific force coefficients in function of feed per tooth, cutting speed and surface inclination angle was also presented. In order to determine geometrical elements of cut precisely, the radial run out was considered in equations applied for the calculation of sectional area of cut and active length of cutting edge. Research revealed that cutter's run out and surface inclination angle have significant influence on the cutting forces, both in the quantitative and qualitative aspect. The formulated model enables cutting force estimation in the wide range of cutting parameters, assuring relative error's values below 16%. Furthermore, the consideration of cutter's radial run out phenomenon in the developed model enables the reduction of model's relative error by the 7% in relation to the model excluding radial run out.  相似文献   

15.
The instantaneous uncut chip thickness and specific cutting forces have a significant effect on predictions of cutting force. This paper presents a systematic method for determining the coefficients in a three-dimensional mechanistic cutting force model—the cutting force coefficients (two specific cutting forces, chip flow angle) and runout parameters. Some existing models have taken the approach that the cutting force coefficients vary as a function of cutting conditions or cutter rotation angle. This paper, however, considers that the coefficients are affected only by the uncut chip thickness. The instantaneous uncut chip thickness is estimated by following the movement of the position of the center of a cutter. To consider the size effect, the present method derives the relationship between the re-scaled uncut chip thickness and the normal specific cutting force, Kn with respect to the cutter rotation angle, while the other two coefficients—frictional specific cutting force, Kf and chip flow angle, θc—remain constant. Subsequently, all the coefficients can be obtained, irrespective of cutting conditions. The proposed method was verified experimentally for a wide range of cutting conditions, and gave significantly better predictions of cutting forces.  相似文献   

16.
Radial immersion ratio is an important factor to determine the threshold for tool conditioning monitoring and automatic force regulation in face milling. In this paper, a method of on-line estimation of the radial immersion angle using cutting force is presented. When a tooth finishes sweeping, a sudden drop of cutting force occurs. This force drop is equal to the cutting force that acts on a single tooth at the swept angle of cut and can be obtained from the cutting force signal in feed and cross-feed directions. The ratio of cutting forces in feed and cross-feed directions acting on the single tooth at the immersion angle is a function of the immersion angle and the ratio of radial-to-tangential cutting force. In this study, it is found that the ratio of radial-to-tangential cutting force is not affected by cutting conditions and axial rake angle. Therefore, the ratio of radial-to-tangential cutting force determined by just one preliminary experiment can be used regardless of the cutting conditions for a given tool and workpiece material. Using the measured cutting force during machining and a predetermined ratio, the radial immersion ratio is estimated in the process. Various experiments show that the radial immersion ratio and instantaneous ratio of the radial to tangential direction cutting force can be estimated very well by the proposed method.  相似文献   

17.
Cutting force has a significant influence on the dimensional accuracy due to tool and workpiece deflection in peripheral milling. In this paper, the authors present an improved theoretical dynamic cutting force model for peripheral milling, which includes the size effect of undeformed chip thickness, the influence of the effective rake angle and the chip flow angle. The cutting force coefficients in the model were calibrated with the cutting forces measured by Yucesan [18] in tests on a titanium alloy, and the model was proved to be more accurate than the previous models. Based on the model, a few case studies are presented to investigate the cutting force distribution in cutting tests of the titanium alloy. The simulation results indicate that the cutting force distribution in the cut-in process has a significant influence on the dimensional accuracy of the finished part. Suggestions about how to select the cutter and the cutting parameters were given to get an ideal cutting force distribution, so as to reduce the machining error, meanwhile keeping a high productivity.  相似文献   

18.
Feed rate optimization for 3-axis ball-end milling of sculptured surfaces   总被引:1,自引:1,他引:1  
The aim of this research is to improve the productivity of CNC machine tools by optimizing feed rate. To optimize feed rate two programs were used: “ACIS” (with scheme language) and “Visual Basic”. The scheme program for modeling the work piece, tool, cutting edge, and calculating maximum cutting force and the Visual Basic program to control all the activities linked to the ACIS program for estimating optimized feed values. Laboratory tests were conducted to verify the results from the modeling, using an insert-type one-flute ball-end cutter on a CK45 carbon steel work piece. No coolant was used throughout the experimental works. Comparisons were made between the maximum cutting forces, in the “fix” feed rate tests. The results indicate significant increases in productivity, which can be achieved, by using the optimized feed rate method.  相似文献   

19.
This paper presents a new type of CNC machine tool interpolator that is capable of generating the cutter path for ball-end milling of a free-form surface. The surface interpolator comprises on-line algorithms for cutter-contact (CC) path scheduling, CC path interpolation, and tool offsetting. The interpolator algorithms for iso-parametric, iso-scallop and iso-planar machining methods are developed, respectively. The proposed surface interpolator method gains the advantages for minimizing the data loaded to the CNC machine tool and maintaining the desired feedrate and position accuracy along the CC path.  相似文献   

20.
This paper presents an analytical model of off-line feed rate scheduling to determine desired feed rates for 3D ball-end milling. Off-line feed rate scheduling is presented as the advanced technology to regulate cutting forces through change of feed per tooth, which directly affects variation of uncut chip thickness. In this paper, the uncut chip thickness is calculated by following the movement of the position of the cutter center, which is determined by runout and cutter deflection. Also, since the developed cutting force model uses the cutting-condition-independent coefficients, off-line feed rate scheduling can be effectively performed regardless of continuous change of cutting conditions. Transverse rupture strength of the tool is used to determine the reference cutting force at which resultant cutting forces are regulated through feed rate scheduling. Experiments validated that the presented feed rate scheduling model reduced machining time drastically and regulated cutting forces at the reference cutting force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号