首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The solubility of potassium sulphate in sulphuric acid at 293°K has been determined. The effects of traces of Fe2+, Fe3+ and Cr3+ ions on the recrystallisation of potassium sulphate from both neutral and acidic solutions have been studied. While Fe2+ ions had no significant effect, concentrations of 0.07 g Fe3+ or 0.02 g Cr2+ per 100 g H2O inhibited crystallisation of potassium sulphate from 100% supersaturated solutions. A method for purifying potassium sulphate contaminated with Fe3+ and Cr3+ ions, by means of fractional crystallisation, is outlined.  相似文献   

2.
Novolac resin was modified with 3‐aminopropyltrimthoxysilane to obtain phenol‐formaldehyde‐aminopropylsiloxane resin (PF‐APS). Fourier transformation infra‐red spectra, thermogravimetric analysis, elemental analysis, and pH‐metric titration were used to characterize PF‐APS. Its chemical formula was suggested to be C14H12.49N0.1O2Si0.1. The resin shows high experimental metal ions uptake capacity within short time of equilibration. The metal capacity was determined by atomic absorption spectrometry to be 0.787 mEq Cu/g. Maximum separation efficiencies of Cu2+, Cr3+, and Ni2+ from aqueous solutions on PF‐APS were at pH 8.0 and time of stirring 60 min; 94.0%, 90.8%, 83.2%, respectively. No significant interference from the background ions Na+, Cl?, and was observed on the separation process. The heavy metal ions were eluted using 0.01 mol L?1 EDTA at 65°C releasing >94% of the separated metal ions. The method of separation was applied successfully to remove the heavy metal ions Cu2+, Cr3+, and Ni2+ from electroplating wastewater from Dekirnis, Dakahlia Governorate, Egypt. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40993.  相似文献   

3.
The Cr3+ ions doped multi-oxide ZnFe2−xCrxO4 ferrite nanoparticles have been synthesized by chemical co-precipitation method. Site occupancies of Zn2+, Cr3+ and Fe3+ ions were analyzed using X-ray diffraction data and Buerger's method. The effect of the constituent phase variation on the magnetic hysteresis behavior was examined by saturation magnetization which decreases with the increase in Cr3+ content in place of Fe3+ ions at octahedral B-site. Typical blocking temperature (TB) around 90 K was observed by zero field cooling and field cooling magnetization study. Room temperature Mössbauer spectra show two paramagnetic doublets (tetrahedral and octahedral sites). The isomer shifts of both doublets decrease whereas quadrupole splitting and relative area of tetrahedral A-site increases with increasing Cr3+ substitution. The dielectric constant (measured on compositions x=0, 0.4, 0.8 and 1.0) increases when the temperature increases as in the semiconductor. This behavior is attributed to the hopping of electrons between Fe2+ and Fe3+ ions with a thermal activation.  相似文献   

4.
Ni2+‐imprinted monolithic column was prepared for the removal of nickel ions from aqueous solutions. N‐Methacryloyl‐L ‐histidine was used as a complexing monomer for Ni2+ ions in the preparation of the Ni2+‐imprinted monolithic column. The Ni2+‐imprinted poly(hydroxyethyl methacrylate‐N‐methacryloyl‐L ‐histidine) (PHEMAH) monolithic column was synthesized by bulk polymerization. The template ion (Ni2+) was removed with a 4‐(2‐pyridylazo) resorcinol (PAR):NH3? NH4Cl solution. The water‐uptake ratio of the PHEMAH–Ni2+ monolith increased compared with PHEMAH because of the formation of nickel‐ion cavities in the polymer structure. The adsorption of Ni2+ ions on both the PHEMAH–Ni2+ and PHEMAH monoliths were studied. The maximum adsorption capacity was 0.211 mg/g for the PHEMAH–Ni2+ monolith. Fe3+, Cu2+, and Zn2+ ions were used as competitive species in the selectivity experiments. The PHEMAH–Ni2+ monolithic column was 268.8, 25.5, and 10.4 times more selective than the PHEMAH monolithic column for the Zn2+, Cu2+, and Fe3+ ions, respectively. The PHEMAH–Ni2+ monolithic column could be used repeatedly without a decrease in the Ni2+ adsorption capacity. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
3-Carboxy-4-hydroxyacetophenone (CHAP) was polycondensed with various proportions of formaldehyde using alcoholic alkali as catalyst. The resin samples, designated as CHAP-F, have been characterized by elemental analyses and IR spectroscopy, by estimation of their number average molecular weights (M?n), by measurement of intrinsic viscosity, and by TGA. Polymeric metal chelates of one CHAP-F sample with Cu2+, Fe3+, Co2+, Ni2+, and UO22+ ions have been prepared and characterized. Ion-exchanging properties of one CHAP-F resin sample for Fe3+, Cu2+, and Ni2+ metal ions are studied by the application of the batch-equilibration method.  相似文献   

6.
In photo-induced graft copolymerization of methyl methacrylate onto cellulose, the effect of metallic ions as sensitizer was investigated. Some metallic ions were effective in their adsorbed states and accelerated the formation of grafts in the order Fe2+ > Ag+ > Fe3+. However, Cu2+ acted negatively, and little effect was observed for Co2+, Ni2+, Mn2+, Zn2+, and Cr3+. In the systems in which aqueous metallic salt solutions were added, the formation of grafts was generally depressed, but Fe3+ was an exception. The effect of metallic ions on the scission reaction of cellulose main chains did not necessarily agree with the effect on the formation of grafts. This is attributed to the varied interaction between cellulose and the different active species produced by irradiation, depending on the type of metallic ions used.  相似文献   

7.
Fullerene-Nafion composite membranes have been fabricated through a new solution casting for the first time. The fullerenes used for the composites included C60 and polyhydroxy fullerene (PHF), C60(OH)n (n ∼ 12). The dispersion of the fullerene in the composite membrane was much more refined with smaller agglomeration particles, relative to the previously prepared fullerene-Nafion composites in which the fullerene was introduced through doping. The miscibility of the hydrophobic fullerene, C60, in the Nafion matrix was further improved by a new fullerene dispersant, poly[tri(ethylene oxide)benzyl]fullerene, C60[CH2C6H4(OCH2CH2O)3OCH3]n (n ∼ 5), synthesized in this work. The solution-cast fullerene composites also demonstrated a significant improvement in the physical stability relative to the fullerene-doped Nafion composites through a better integration of the fullerene into the Nafion matrix. Furthermore, increased loadings of the fullerene in Nafion were made possible through the new solution-casting method, compared to the previous doping method. The water characteristics in the fullerene composites have been examined by TGA and 1H pulse NMR measurements. The interactions between the fullerene and the Nafion have been studied through ATR FT-IR and molecular dynamics simulations which suggested PHF resides primarily in the hydrophobic domain of Nafion when the loading was low. The voltammetric measurements also have shown that the fullerene composites have the reduced limiting current density, compared to Nafion membranes without fullerenes.  相似文献   

8.
For the safe and trouble‐free operation of a manufacturing plant and the safe storage of acrylic, as well as methacrylic monomers, it is important to know the polymerization stability as a function of the process parameters (temperature, oxygen concentration, and impurities, e.g., metal ions). Contamination with metal ions can be caused by the corrosion of steel units. Therefore, the influence of the metal ions Cr3+, Fe3+, Ni2+ and Cu2+ in the concentration range of 0–10 ppm (g g–1) on the polymerization behavior and the oxygen consumption of acrylic and methacrylic acid were examined in this work. It was shown that Cr3+, Ni2+, and Cu2+ ions extend the inhibition period of acrylic acid (AA) and methacrylic acid (MAA) and reduce the O2 consumption. Fe3+ ions, however, cause a decrease of the inhibition period and in the case of AA an increase of the O2 consumption, which leads, in the end, to a faster unintentional polymerization. Therefore, alloys which contain iron should be avoided as far as possible in the construction of AA plants. Fe3+‐ions show the opposite influence towards MAA, here the presence of Fe3+ shows a stabilizing effect.  相似文献   

9.
Thin-solid films of higher fullerenes, viz. C76, C78 and C84, were prepared by the drop coating technique and characterized by simultaneous cyclic voltammetry and piezoelectric microgravimetry with the use of an electrochemical quartz crystal microbalance. Properties of the films were compared with those reported earlier for the C60 and C70 thin-solid films. The effect of nature of the counter cation on electrochemical properties of the films has been probed by employing acetonitrile solutions of two different 0.1 M supporting electrolytes, namely tetra(n-butyl)ammonium (TBA+) hexafluorophosphate and potassium hexafluorophosphate. Stability of the films with respect to dissolution depends on the fullerene oxidation state as well as on the nature of both the fullerene in the film and the counter cation in the supporting electrolyte. The TBA+ counter cation ingress to the film for compensation of the negative charge of the reduced fullerene is accompanied by the acetonitrile solvent intake. The number of acetonitrile molecules per TBA+ counter cation entering the film is higher the higher the fullerene. Also, the Langmuir films of higher fullerenes were prepared at the air-water interface and the film morphology was characterized by the Brewster angle microscopy.  相似文献   

10.
《分离科学与技术》2012,47(4):664-678
Nano polyoxometallate-cation exchangers, tin potassium vanadate (TPV), and zirconium potassium vanadate (ZPV), with stereoregular particulate structures have been chemically synthesized using a homogeneous precipitation technique under a variety of conditions. The experimental parameters such as mixing, volume ratio, order of mixing and pH were established for the synthesis of the materials and fairly compromised to optimize the ion exchange properties of the produced ion exchangers. Structural characterizations of the materials were performed using XRF, XRD, thermal analysis, surface area and porosity measurements, and infra-red spectroscopy. The results were correlated to the lattice parameters, unit cell parameters, and space group of the exchangers. Scanning electron microscopy and atomic force microscopy revealed their sereoregularity in space. Compositions and molecular formulae of both the amorphous and crystalline materials have been investigated. Ion exchange properties and distribution coefficients, K d , for some heavy metals namely, Co2+, Cu2+, Ni2+, and Cr6+ were measured at different pH values. TPV and ZPV selectivities have been examined by achieving some important and analytically difficult binary and multi-component separations. The results indicated that TPV is practically utilized for best separation of Co2+/Cu2+, Ni2+/Co2+, Cr6+/Co2+, Ni2+/Cu2+, Cr6+/Cu2+, Ni2+/Cr6+, Ni2+/(Co2+, Cu2+), and Ni2+/(Co2+, Cu2+, Cr6+), while ZPV could be efficiently used for separation of Cu2+/Co2+, Ni2+/Co2+, Cr6+/Co2+, Cu2+/Ni2+, Cr6+/Cu2+, Cr6+/Ni2+, and Cr6+/(Co2+, Cu2+, Ni2+).  相似文献   

11.
Dipendu Saha 《Carbon》2010,48(12):3471-6786
C60 buckyball molecules were partially truncated by a controlled oxidation at 400 °C and 2 bar oxygen pressure to create unique pore textures suitable for hydrogen adsorption. Pore textural analysis and density measurement confirmed the success of cage-opening and the creation of pore structures accessible to gas molecules. The specific surface area of the C60 sample were increased from below detection to a measurable value (BET: 85 m2/g). Raman spectral study showed that the three main bands of C60, Hg(1), Ag(1) and Ag(2) remained and significant defects were created after the C60 fullerenes were partially oxidized. XRD and SEM measurements suggested that the C60 fullerenes lost their crystallinity and the crystal surfaces were etched after the oxidation step. Hydrogen adsorption on the C60 fullerenes were measured at three temperatures (77, 143 and 228 K) and hydrogen pressures up to 150 bar. Hydrogen adsorption capacity on C60 fullerenes at 77 K at 120 bar was more than tripled (from 3.9 to 13 wt.%) after the C60 fullerenes were partially oxidized. The average heat of adsorption of hydrogen on the partially oxidized C60 fullerene molecules (2.38 kJ/mol) is within the range of the reported values of heat of adsorption on other porous adsorbents.  相似文献   

12.
In this study, a novel azocalix[4]arene derivative, 5,11,17-tris[(1-naphtyl)azo]-25,26,27,28-tetrahydroxy-calix[4]arene (NAC4) bearing napthyl groups on the upper rim was synthesized. Its complexation behavior for alkali, alkaline-earth and various heavy metal ions (Li+, Na+, K+, Rb+, Cs+, Mg2+, Ca2+, Sr2+, Ba2+, Pb2+, Hg2+, Ni2+, Cd2+, Cu2+, Zn2+, Co2+, Fe2+, Cr3+, Ag+) was investigated by spectroscopic and voltammetric methods. This chemosensor exhibits decreased absorbance in the presence of Hg2+ and a unique absorbance quenching effect only for Cr3+. In addition, a new absorption band centered at 565 nm with the formation of the 1:1 host–guest complex (Cr3+-NAC4) was observed in the case of Cr3+, leading to an obvious color change from light orange to dark lilac. In voltammetric experiments, Cr3+ ions decreased voltammetric peaks of NAC4, whereas no significant changes occurred in the presence of the other metal ions. The Benesi–Hildebrand method was used to determine a logarithmic value of 3.76 for the association constant of the complex between Cr3+ and NAC4.  相似文献   

13.
Alkyne-functionalized fullerenes (fullerynes) were designed and conveniently synthesized via Bingel reaction in one step with high yields. They were used to react with azido-functionalized polystyrene (PS) via Huisgen [3 + 2] cycloaddition ‘click’ chemistry to form two fullerene polymers: one with C60 tethered to the end of a PS chain (C60-1PS) and the other with C60 tethered at the junction point of two PS chains of identical molecular weight (C60-2PS). The fullerene polymers were characterized by 1H NMR, 13C NMR, FT-IR, MALDI-TOF mass spectrometry and SEC. The results showed that the fullerene polymers are well-defined with narrow polydispersity and high fullerene functionality. Besides, aggregation of C60 in THF was observed in the SEC traces. The optical properties of the fullerene polymers were studied by UV–Vis absorption spectroscopy, and the results suggested that the PS chain(s) on the fullerene core has no remarkable effect on the optic property of C60. The thermal properties of the fullerene polymers were studied by TGA and DSC, and the results indicated that the two fullerene polymers with different C60 content and distinct molecular topology may have different self-assemble architectures in the solid state. The well-defined fullerene polymers can be used as model compounds to study the self-assemble architecture of shape amphiphiles based on polymer-tethered molecular nanoparticles.  相似文献   

14.
The effects of water-soluble polymers on the concentration and separation of the aqueous solutions of the metal ions have been studied. The separation of metal ions can be possible by ultrafiltration-complexation process. The effect of Dextran, which is a water-soluble polymer, on the concentration and separation of metal ions (Cu2+, Ni2+, Fe3+) have been investigated by using EC-PEG 4000 alloy membranes. The permeability of these membranes for metal ions has been rrecorded at constant pressure but different pH values. It has been notices that the highest water-permeable membrane is also permeable towards Cu2+ and Ni2+, but has shown a considerable retention for Fe3+ as a result of the hydrolysis of Fe3+. The retentions of metallic ions and metallic-ion-Dextran couples have been determined at constant pressure but different pH and polymer concentration values. It has been shown that Fe3+/Ni2+ and Fe3+/Cu2+ couples can be separated by using Dextran. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
16.
The efficiency of catalytic ozonation with homogeneous (containing dissolved ions of Fe2+, Mn2+, Cu2+, Ni2+, Co2+, V5+, Cr3+, Mo6+) and heterogeneous (MnO2, Ni2O3, Fe2O3, CuO, Al2O3, CoO, V2O5, Cr2O3, MoO3, TiO2) catalysts and non-accompanied ozonation was compared for degradation of m-dinitrobenzene (m-DNB). Several transition metals in homogeneous and heterogeneous form improved significantly the ozone performance for degradation of m-DNB. This improvement was found to be due to supplementary formation of reactive species (hydroxyl radicals) and better ozone utilization. The effects observed were found to be strongly dependent on the treatment conditions.  相似文献   

17.
Nanocomposite films of polystyrene (PS) and poly(methyl methacrylate) (PMMA) were prepared by loading four variations of fullerenes such as pristine C60, multiarylated [60]fullerenes with tolyl (tolyl‐C60) and phenol groups (phenol‐C60), and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM). The TGA analysis showed no appreciable change in their thermal and thermo‐oxidative stabilities for PS/tolyl‐C60 and PS/phenol‐C60 films, but significant improvement up to +45°C for PS/C60 and PS/PCBM films even under air. The thermo‐oxidative stability of PMMA/phenol‐C60 and PMMA/PCBM, however, exhibited slightly larger improvements over that of PMMA/C60. We believe that the radical‐scavenging ability of π‐conjugative fullerenes and the dispersibility of fullerene–polymer combinations play key roles in these enhancements. We also found that optimal loading occurred at a relatively low content of fullerenes (0.4–0.8 wt%) probably because larger amounts may interfere with the morphological interaction of polymer chains which is essential for the thermal persistency of polymer. POLYM. COMPOS. 37:1143–1151, 2016. © 2014 Society of Plastics Engineers  相似文献   

18.
《分离科学与技术》2012,47(10):2303-2314
Abstract

Potassium‐dicyclohexyl‐18‐crown‐6 was used as a selective and efficient carrier for the uphill transport of thallium (III) ion as [TlCl4]? complex ion through a chloroform bulk liquid membrane. By using oxalate anion as a metal ion acceptor in the receiving phase, the amount of thallium (III) transported across the liquid membrane after 120 min was 96±2%. The selectivity and efficiencies of thallium transport from aqueous solutions containing Cu2+, Zn2+, Ni2+, Cd2+, Pb2+, Co3+, Mn2+ , Cr3+, Mg2+, Ca2+, K+, Na+, and Fe3+ ions were investigated. In the presence of Na3PO4 (0.01 M) at pH=3 as a suitable precipitation agent in the source phase, the interfering effect of Pb2+ ion were diminished drastically.  相似文献   

19.
The concentration and separation of some metallic ions have been achieved by complexing these species with suitable macromolecules or with water-soluble polymers in ultrafiltration. The effect of water-soluble poly(vinyl alcohol) (PVA) on the concentration and separation of Cu2+, Ni2+, and Fe3+ ions have been investigated by using EC-PEG4000 alloy membranes in ultrafiltration experiments. The water permeability of the membranes has been measured at various pressures. The permeability of these membranes for metal ions, however, has been recorded at constant pressure but at different pH values. The highest water-permeable membrane is also permeable for Cu2+ and Ni2+, but it shows a considerable retention for Fe3+, probably as a result of the hydrolysis of Fe3+. The retentions of metallic ions and metallic ion-PVA couples have been determined at constant pressure but varying pH and polymer concentration values. It has been shown that Fe3+/Ni2+ pairs can well be separated by using PVA. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
BACKGROUND: In recent years, environmental pollution has become a major concern for industrial societies. The design of highly selective and sensitive sensor materials has become a very important scientific goal. RESULTS: A novel 4‐amino‐substituted 1,8‐naphthalimide dye with intense green fluorescence was synthesized. The dye was then copolymerized with methyl methacrylate. The presence of metal cations (Ca2+, Mg2+, Cr3+, Mn2+, Fe3+, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+) could quench the fluorescence intensity of a tetrahydrofuran solution of the dye and the copolymer at different levels. The effect of Fe3+ was much stronger than that of the other cations. There was a good linear correlation between F0/F (F0 and F are the fluorescence intensities in the absence and presence of the metal ions, respectively) and the Fe3+ concentration in the range 1.33 × 10?7–4.00 × 10?4 mol L?1. The polymeric sensor in a film state exhibited a dynamic response to Fe3+ in the concentration range from 3.44 × 10?6 to 3.04 × 10?3 mol L?1 and the average response time was about 20 s. CONCLUSION: In view of the selectivity and rapid responsivity of the polymer sensor studied, it could be used as a new polymeric sensor for water pollution by Fe3+ cations. Copyright © 2008 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号