首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文选取风电叶片行业所用胶粘剂进行研究,断裂韧性(GIC)表明胶粘剂抗裂纹延展的能力,即胶粘剂韧性。以不同韧性的环氧胶粘剂为测试对象,测试了断裂伸长率、本体冲击、剪切疲劳m值、断裂韧性。实验结果表明:断裂伸长率、冲击强度、疲劳m值与断裂韧性在大多测试结果下呈正相关,但在个别测试结果下冲击强度与断裂韧性呈反相关;对于不同韧性的胶粘剂,判断其韧性好坏不能仅仅依据裂纹扩展方式,还要依据载荷值、胶层破坏模式进行具体分析。  相似文献   

2.
本文概述了国内外叶片降噪的相关专利和标准,分析了风电叶片的结构振动与空气动力噪声源特点及其控制技术,并论述了几种降噪措施和方法,为开发设计低噪声叶片提供参考。  相似文献   

3.
研究了混合后晾置时间、固化程度、混合比例和胶层厚度对风电叶片用环氧结构胶粘接性能的影响。采用拉伸剪切强度和等效剥离强度对粘接性能进行表征。研究表明:结构胶混合后晾置90 min再进行粘接,粘接强度最高;Tg达到60℃后,粘接强度处于稳定状态;在正负5%的配比变化范围内,粘接性能稳定;胶层厚度增加,剪切强度呈线性下降趋势,而剥离性能基本稳定。此项研究为风电叶片合模工艺优化提供了技术基础。  相似文献   

4.
研究了端环氧基硅烷改性的异佛尔酮二胺固化剂及其对双酚A型环氧树脂的固化性能测试了浇注体的力学性能及耐热性能,并用红外光谱分析了该固化剂在改性过程中的反应情况结果表明,用改性固化剂制备的树脂固化物具有良好的力学及耐热性能,可以满足风力发电叶片的需求.  相似文献   

5.
风电叶片涂料检测方法的研究   总被引:1,自引:0,他引:1  
我国风电叶片涂料的技术标准尚处于空白,结合我国风场的气候特征和风电叶片涂料的使用要求,通过对国内外相关标准的研究分析,提出了适合我国风电叶片涂料的检测项目.提出风电叶片涂料的技术要求应包括力学性能、防腐性能和湿漆性能3类,并对相应的检测方法进行了探讨.  相似文献   

6.
为助力风电叶片用原材料降本,在现有的拉挤片材体系中加入改性内脱模剂,提高片材表面极性、增加表面能,由此开发免脱模布拉挤片材。对于免去脱模布后可能造成的力学及表面性能降低的风险,对其开展了本体力学性能、界面性能及表面粘接强度稳定性研究,并选用相同原材料体系的有脱模布拉挤片材作为对照组。测试结果表明免脱模布拉挤片材各项性能均与有脱模布拉挤片材相当,90天内的表面粘接性能波动幅度在均值的±5%范围内,能够满足叶片使用需求。  相似文献   

7.
为了提高风电叶片在铺层过程中的定位准确度和工作效率,解决人工测量划线等传统工艺引起的定位精度差、工时长等问题,基于激光投影系统开发了全新的精准辅助定位技术。通过研究激光投影器的安装高度和角度,分析不同安装条件下的投影误差,从而确定装配过程中的最佳装配位置,并将投影系统应用于叶片实际生产中。实际应用效果表明,激光投影技术辅助铺层定位可将偏差控制在5mm内,铺层工时缩短5h,有效克服了现存铺层工艺中人工划线定位精度差、工作效率低等缺点。  相似文献   

8.
霍力超 《化学工程师》2012,26(10):63-64,69
本文介绍了一种风电叶片用环氧树脂触变胶,以及该材料的制备、性能及特点。  相似文献   

9.
对四种高模玻纤分别进行了浸胶纱的拉伸性能、层合板的单层厚度及0°拉伸性能的研究,并对四种高模玻纤对工字梁刚度的影响进行了模型分析。四种高模玻纤具有相近的原纱拉伸模量,层合板在等纤维体积含量下具有相近的0°拉伸模量,但是在真空导入成型工艺中,由于单层厚度的差异导致纤维体积分数不同,从而具有不同的0°拉伸模量。在应用于同样铺层的工字梁时,单层厚度为0.78mm的高模玻纤层合板对应的工字梁刚度比单层厚度为0.83mm的高模玻纤层合板增加约6%。  相似文献   

10.
以不同增韧剂改性EP(环氧树脂)为基体树脂,采用曼尼希改性胺为固化剂制备了不同改性EP胶粘剂。研究结果表明:当增韧剂为聚氨酯(PU)预聚体时,相应的改性EP胶粘剂的粘接性能优异;在上述体系中加入玻璃纤维增强填料后,相应的改性EP胶粘剂的综合力学性能和粘接性能俱佳,其拉伸强度超过75.00 MPa、拉伸模量超过4.00 GPa、断裂伸长率超过4.00%且90°剥离强度超过10.00 kN/m,属于高韧性EP胶粘剂,并且完全满足风电叶片的使用要求。  相似文献   

11.
拉挤板材用于风电叶片主梁制作,相比较于灌注工艺板材,具有更高的0°方向力学性能及模量,对叶片具有减轻质量的作用,同时能够节约人工成本。研究了拉挤板材应用于风电叶片主梁制造中,工艺条件对力学性能的影响,研究表明:在工艺过程中,固化温度、固化时间、树脂体系等其他相关因素对力学性能影响明显;制样方式中,边缘未打磨处理与边缘切割处理的试样的拼接强度差达10.9 MPa,拼接面缝间距为0 mm与5 mm的试样的拼接强度差达6.2 MPa;平纹布中纤维浸润剂失效与否对应的拼接强度差达10.5 MPa。  相似文献   

12.
以聚氨酯分散体改性羟基丙烯酸分散体及聚醚改性的HDI固化剂为成膜物质,制备了一种水性聚氨酯风电叶片面漆。结果表明,羟基丙烯酸及聚氨酯分散体比例为3︰1及固化剂过量质量分数为40%时涂层性能最优。通过长石粉和聚四氟乙烯分散体可提高涂层的耐磨性,且聚四氟乙烯分散体的质量分数为4%时涂层的耐磨性最好。所制备的涂层综合性能均满足相关标准的要求,具有良好的应用前景。  相似文献   

13.
风电叶片除冰技术的研究进展   总被引:1,自引:0,他引:1  
风能作为替代世界传统能源的清洁能源之一,近几年来已在我国发展迅猛。我国已建或规划建设的风场,大多处在高山及边疆区域,风电机组必然面临覆冰的考验。风电叶片覆冰严重影响风电叶片的气动性能、载荷和功率输出。本文概括阐述了叶片表面覆冰起因、覆冰区域及覆冰危害,并概括讨论了各种除冰方法。  相似文献   

14.
针对风电叶片企业统计过程控制(SPC)应用匮乏的现状,介绍了SPC在风电叶片制造领域的应用,并以实例展示了叶片制造过程的控制方法。通过研究发现,SPC可对风电叶片制造过程中出现的异常因素进行有效的预防和报警,可提高叶片制造的过程能力和质量水平。  相似文献   

15.
使用拉挤片材制作风电叶片主梁,拉挤片材材质为普通高模单向布,建立叶片有限元模型,模型采用SHELL181单元建立,施加叶片静强度载荷,最终分析出主梁危险区域.拉挤片材与片材横向之间存在间隙,此间隙在叶片主梁中是由树脂填充,考虑到此间隙粘接强度是设计薄弱区,本文基于此处进行验证.由于SHELL181单元不能有效分析出拉挤...  相似文献   

16.
《应用化工》2022,(Z1):106-111
介绍了风电叶片的常见缺陷和超声波检测方法,主要对国内外超声波无损检测在风电叶片中应用的研究方法及研究现状进行了综述和评价,阐述了超声波检测风电叶片的可行性及重要性,并指出了未来超声波检测风电叶片的研究方向,对超声波检测在风电叶片缺陷检测中的进一步应用提供了一定的参考和依据。  相似文献   

17.
在大型风力发电叶片生产过程中,叶片模具液压翻转动作的控制对风力发电叶片质量及模具寿命起着至关重要的作用,因此在叶片生产过程中,对叶片模具开合模翻转动作的同步性及可靠性提出了严格的要求。本文主要介绍了大型风电叶片模具多翻转机构的液压及电气控制系统,详细分析了模具翻转过程中翻转油缸动作特性、电气控制等关键内容。该控制系统在实际应用中能够较好地解决大型风电叶片模具翻转过程同步性及可靠性等控制难题。  相似文献   

18.
近年来,随着风电叶片越做越大,叶片的生产周期也随之变长。为了有效缩短叶片的生产周期,降低企业的生产成本,必须从环氧树脂固化工艺方面进行研究,在保证产品力学性能的前提下,尽可能的缩短生产周期。本文选用四组不同的工艺方法进行比较,研究结果表明,可以通过力学和热学手段来评估固化过程并通过合理的调控升温程序来缩短生产周期。  相似文献   

19.
分析了聚氨酯树脂78BD085/44CP20与环氧树脂在黏度、凝胶时间以及浇注体力学性能的不同,将其与玻纤布结合采用真空灌注方式分别制备了玻纤增强复合材料(FRP),对比了聚氨酯FRP以及环氧FRP的力学性能和疲劳性能,并采用扫描电镜观察了聚氨酯FRP断面。结果表明:相同温度下,聚氨酯树脂的初始黏度比环氧树脂的更低,凝胶时间更快;聚氨酯树脂浇注体拉伸模量以及拉伸、压缩强度均高于环氧树脂浇注体15%以上;聚氨酯FRP具有优异的力学性能,拉伸、压缩以及剪切强度均高于环氧树脂FRP 7%以上;聚氨酯FRP疲劳性能满足叶片的结构设计要求;聚氨酯树脂与玻纤布具有优异的结合性。  相似文献   

20.
风电叶片用环氧树脂固化体系动力学研究   总被引:2,自引:1,他引:2  
以三乙醇胺、BH-1、2-乙基-4-甲基咪唑(2,4-EMI)和2,4,6-三(二甲氨基甲基)苯酚(DMP-30)为促进剂,采用非等温DSC(差示扫描量热)法研究了四种不同环氧树脂(EP)/酸酐体系的固化反应动力学和固化工艺,并采用Ozawa法、Kissinger法和Crane法计算出不同固化体系的动力学参数。结果表明:四种固化体系的活化能分别为25.75、20.93、29.29、33.59 kJ/mol,反应级数均小于0.9(近似于1级反应);固化工艺为"80℃/2 h→100℃/2 h→120℃/2 h";DMP-30/EP/酸酐固化体系的黏度特性和反应特性完全满足风电叶片用复合材料对树脂基体的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号