首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sporadic Creutzfeldt-Jakob disease (sCJD) is the commonest form of human prion diseases, accounting for about 85% of all cases. Current criteria for intra vitam diagnosis include a distinct phenotype, periodic sharp and slow-wave complexes at electroencephalography (EEG), and a positive 14-3-3-protein assay in the cerebrospinal fluid (CSF). In sCJD, the disease phenotype may vary, depending upon the genotype at codon 129 of the prion protein gene (PRNP), a site of a common methionine/valine polymorphism, and two distinct conformers of the pathological prion protein. Based on the combination of these molecular determinants, six different sCJD subtypes are recognized, each with distinctive clinical and pathologic phenotypes. We analyzed CSF samples from 127 subjects with definite sCJD to assess the diagnostic value of 14-3-3 protein, total tau protein, phosphorylated(181) tau, and amyloid beta (Aβ) peptide 1-42, either alone or in combination. While the 14-3-3 assay and tau protein levels were the most sensitive indicators of sCJD, the highest sensitivity, specificity and positive predictive value were obtained when all the above markers were combined. The latter approach also allowed a reliable differential diagnosis with other neurodegenerative dementias.  相似文献   

2.
Parkinson's disease (PD) is the most common form of movement disorder and affects approximately 4% of the population aged over 80 years old. Currently, PD cannot be prevented or cured, and no single diagnostic biomarkers are available. Notably, recent studies suggest that two familial PD-linked molecules, α-synuclein and DJ-1, are present in cerebrospinal fluid (CSF) and that their levels may be altered during the progression of PD. In this regard, sensitive and accurate methods for evaluation of α-synuclein and DJ-1 levels in the CSF and blood have been developed, and the results suggest that the levels of both molecules are significantly decreased in the CSF in patients with PD compared with age-matched controls. Furthermore, specific detection and quantification of neurotoxic oligometric forms of α-synuclein in the blood using enzyme-linked immunosorbent assays might be expected as potential peripheral biomarkers for PD, although further validation is required. Currently, neither α-synuclein nor DJ-1 is satisfactory as a single biomarker for PD, but combinatory evaluation of these biological fluid molecules with other biomarkers and imaging techniques may provide reliable information for diagnosis of PD.  相似文献   

3.
目的对汉逊酵母表达的adr亚型重组乙型肝炎(简称乙肝)疫苗(adr疫苗)进行免疫学特性与功能学研究。方法采用adr疫苗与酿酒酵母表达的重组乙肝疫苗(adw疫苗)免疫转人HLA-A2基因小鼠,免疫剂量2μg/0.2 ml,于初免3周后进行第2次免疫。于第2次免疫1周后,采血,分离血清,经ELISA法检测小鼠血清中抗-HBs抗体水平。同时取小鼠脾脏,制备脾细胞悬液,采用HLA-A2/WLSLLVPFV五聚体荧光标记流式细胞术分析细胞中特异性抗乙肝病毒表位的CTL比例。结果 adr疫苗与adw疫苗均可诱导转基因小鼠产生抗乙肝表面抗原抗体,且抗体水平差异无统计学意义(P>0.05),2种疫苗对转基因小鼠的体液免疫应答的增强作用相似;adr疫苗诱导的乙肝表面抗原特异性CTL应答作用较adw疫苗更明显(P<0.05)。结论 adr重组乙肝疫苗(汉逊酵母)诱导转基因小鼠的体液免疫应答作用与现有adw疫苗相似,但其诱导机体产生细胞免疫应答的能力更显著,可能具有更加良好的预防HBV感染作用和前景。  相似文献   

4.
In early-stage Parkinson′s disease (PD), cognitive impairment is common, and a variety of cognitive domains including memory, attention, and executive functioning may be affected. Cerebrospinal fluid (CSF) biomarkers are potential markers of cognitive functioning. We aimed to explore whether CSF α-synuclein species, neurofilament light chain, amyloid-β42, and tau are associated with cognitive performance in early-stage PD patients. CSF levels of total-α-synuclein and phosphorylated-α-synuclein, neurofilament light chain, amyloid-β42, and total-tau and phosphorylated-tau were measured in 26 PD patients (disease duration ≤5 years and Hoehn and Yahr stage 1–2.5). Multivariable linear regression models, adjusted for age, gender, and educational level, were used to assess the relationship between CSF biomarker levels and memory, attention, executive and visuospatial function, and language performance scores. In 26 early-stage PD patients, attention and memory were the most commonly affected domains. A higher CSF phosphorylated-α-synuclein/total-α-synuclein ratio was associated with better executive functioning (sβ = 0.40). Higher CSF neurofilament light was associated with worse memory (sβ = −0.59), attentional (sβ = −0.32), and executive functioning (sβ = −0.35). Reduced CSF amyloid-β42 levels were associated with poorer attentional functioning (sβ = 0.35). Higher CSF phosphorylated-tau was associated with worse language functioning (sβ = −0.33). Thus, CSF biomarker levels, in particular neurofilament light, were related to the most commonly affected cognitive domains in early-stage PD. This indicates that CSF biomarker levels may identify early-stage PD patients who are at an increased risk of developing cognitive impairment.  相似文献   

5.
ADAM10 is the main α-secretase that participates in the non-amyloidogenic cleavage of amyloid precursor protein (APP) in neurons, inhibiting the production of β-amyloid peptide (Aβ) in Alzheimer’s disease (AD). Strong recent evidence indicates the importance of the localization of ADAM10 for its activity as a protease. In this study, we investigated ADAM10 activity in plasma and CSF samples of patients with amnestic mild cognitive impairment (aMCI) and mild AD compared with cognitively healthy controls. Our results indicated that plasma levels of soluble ADAM10 were significantly increased in the mild AD group, and that in these samples the protease was inactive, as determined by activity assays. The same results were observed in CSF samples, indicating that the increased plasma ADAM10 levels reflect the levels found in the central nervous system. In SH-SY5Y neuroblastoma cells, ADAM10 achieves its major protease activity in the fraction obtained from plasma membrane lysis, where the mature form of the enzyme is detected, confirming the importance of ADAM10 localization for its activity. Taken together, our results demonstrate the potential of plasma ADAM10 to act as a biomarker for AD, highlighting its advantages as a less invasive, easier, faster, and lower-cost processing procedure, compared to existing biomarkers.  相似文献   

6.
Malignant cells differ from benign ones in their metabolome and it is largely unknown whether this difference is reflected in the metabolic profile of their microvesicles (MV), which are secreted into the blood of cancer patients. Here, they are present together with MV from the various blood and endothelial cells. Harvesting MV from 78 breast cancer patients (BC) and 30 controls, we characterized the whole blood MV metabolome using targeted and untargeted mass spectrometry. Especially (lyso)-phosphatidylcholines and sphingomyelins were detected in a relevant abundance. Eight metabolites showed a significant discriminatory power between BC and controls. High concentrations of lysoPCaC26:0 and PCaaC38:5 were associated with shorter overall survival. Comparing BC subtype-specific metabolome profiles, 24 metabolites were differentially expressed between luminal A and luminal B. Pathway analysis revealed alterations in the glycerophospholipid metabolism for the whole cancer cohort and in the ether lipid metabolism for the molecular subtype luminal B. Although this mixture of blood-derived MV contains only a minor number of tumor MV, a combination of metabolites was identified that distinguished between BC and controls as well as between molecular subtypes, and was predictive for overall survival. This suggests that these metabolites represent promising biomarkers and, moreover, that they may be functionally relevant for tumor progression.  相似文献   

7.
The degeneration and dysfunction of neurons are key features of neurodegenerative diseases (NDs). Currently, one of the main challenges facing researchers and clinicians is the ability to obtain reliable diagnostic tools that will allow for the diagnosis of NDs as early as possible and the detection of neuronal dysfunction, preferably in the presymptomatic stage. Additionally, better tools for assessing disease progression in this group of disorders are also being sought. The ideal biomarker must have high sensitivity and specificity, be easy to measure, give reproducible results, and reflect the disease progression. Molecular biomarkers include miRNAs and extracellular microvesicles known as exosomes. They may be measured in two extracellular fluids of the highest importance in NDs, i.e., cerebrospinal fluid (CSF) and blood. The aim of the current review is to summarize the pathophysiology of the four most frequent NDs—i.e., Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS)—as well as current progress in the research into miRNAs as biomarkers in these major neurodegenerative diseases. In addition, we discuss the possibility of using miRNA-based therapies in the treatment of neurodegenerative diseases, and present the limitations of this type of therapy.  相似文献   

8.
Alzheimer’s disease (AD) is the major cause of dementia, and affected individuals suffer from severe cognitive, mental, and functional impairment. Histologically, AD brains are basically characterized by the presence of amyloid plaques and neurofibrillary tangles. Previous reports demonstrated that protein kinase CK1δ influences the metabolism of amyloid precursor protein (APP) by inducing the generation of amyloid-β (Aβ), finally contributing to the formation of amyloid plaques and neuronal cell death. We therefore considered CK1δ as a promising therapeutic target and suggested an innovative strategy for the treatment of AD based on peptide therapeutics specifically modulating the interaction between CK1δ and APP. Initially, CK1δ-derived peptides manipulating the interactions between CK1δ and APP695 were identified by interaction and phosphorylation analysis in vitro. Selected peptides subsequently proved their potential to penetrate cells without inducing cytotoxic effects. Finally, for at least two of the tested CK1δ-derived peptides, a reduction in Aβ levels and amyloid plaque formation could be successfully demonstrated in a complex cell culture model for AD. Consequently, the presented results provide new insights into the interactions of CK1δ and APP695 while also serving as a promising starting point for further development of novel and highly innovative pharmacological tools for the treatment of AD.  相似文献   

9.
The melanocortin system is a major regulator of stress responses in the skin and is responsible for the induction of melanin synthesis through activation of melanogenesis enzymes. The expression of both melanocortin system genes and melanogenesis enzyme genes is altered in psoriasis, and the focus here was on twelve genes related to the signal transduction between them. Additionally, five endogenous opioid system genes that are involved in cutaneous inflammation were examined. Quantitative real-time-PCR was utilized to measure mRNA expression in punch biopsies from lesional and non-lesional skin of psoriasis patients and from the skin of healthy control subjects. Most of the genes related to melanogenesis were down-regulated in patients (CREB1, MITF, LEF1, USF1, MAPK14, ICAM1, PIK3CB, RPS6KB1, KIT, and ATRN). Conversely, an up-regulation occurred in the case of opioids (PENK, PDYN, and PNOC). The suppression of genes related to melanogenesis is in agreement with the reported reduction in pigmentation signaling in psoriatic skin and potentially results from the pro-inflammatory environment. The increase in endogenous opioids can be associated with their involvement in inflammatory dysregulation in psoriasis.  相似文献   

10.
The term Western diet (WD) describes the consumption of large amounts of highly processed foods, rich in simple sugars and saturated fats. Long-term WD feeding leads to insulin resistance, postulated as a risk factor for Alzheimer’s disease (AD). AD is the main cause of progressive dementia characterized by the deposition of amyloid-β (Aβ) plaques and neurofibrillary tangles consisting of the hyperphosphorylated tau (p-Tau) protein in the brain, starting from the entorhinal cortex and the hippocampus. In this study, we report that WD-derived impairment in insulin signaling induces tau and Aβ brain pathology in wild-type C57BL/6 mice, and that the entorhinal cortex is more sensitive than the hippocampus to the impairment of brain insulin signaling. In the brain areas developing WD-induced insulin resistance, we observed changes in p-Tau(Thr231) localization in neuronal subcellular compartments, indicating progressive tauopathy, and a decrease in amyloid precursor protein levels correlating with the appearance of Aβ peptides. These results suggest that WD promotes the development of AD and may be considered not only a risk factor, but also a modifiable trigger of AD.  相似文献   

11.
Parkinson’s disease (PD) is a socially significant disease, during the development of which oxidative stress and inflammation play a significant role. Here, we studied the neuroprotective effects of four Kunitz-type peptides from Heteractis crispa and Heteractis magnifica sea anemones against PD inductors. The peptide HCIQ1c9, which was obtained for the first time, inhibited trypsin less than other peptides due to unfavorable interactions of Arg17 with Lys43 in the enzyme. Its activity was reduced by up to 70% over the temperature range of 60–100 °C, while HCIQ2c1, HCIQ4c7, and HMIQ3c1 retained their conformation and stayed active up to 90–100 °C. All studied peptides inhibited paraquat- and rotenone-induced intracellular ROS formation, in particular NO, and scavenged free radicals outside the cells. The peptides did not modulate the TRPV1 channels but they affected the P2X7R, both of which are considered therapeutic targets in Parkinson’s disease. HMIQ3c1 and HCIQ4c7 almost completely inhibited the ATP-induced uptake of YO-PRO-1 dye in Neuro-2a cells through P2X7 ion channels and significantly reduced the stable calcium response in these cells. The complex formation of the peptides with the P2X7R extracellular domain was determined via SPR analysis. Thus, these peptides may be considered promising compounds to protect neuronal cells against PD inductors, which act as ROS production inhibitors and partially act as ATP-induced P2X7R activation inhibitors.  相似文献   

12.
Multiple sclerosis (MS) is a debilitating autoimmune disorder. Currently, there is a lack of effective treatment for the progressive form of MS, partly due to insensitive readout for neurodegeneration. The recent development of sensitive assays for neurofilament light chain (NfL) has made it a potential new biomarker in predicting MS disease activity and progression, providing an additional readout in clinical trials. However, NfL is elevated in other neurodegenerative disorders besides MS, and, furthermore, it is also confounded by age, body mass index (BMI), and blood volume. Additionally, there is considerable overlap in the range of serum NfL (sNfL) levels compared to healthy controls. These confounders demonstrate the limitations of using solely NfL as a marker to monitor disease activity in MS patients. Other blood and cerebrospinal fluid (CSF) biomarkers of axonal damage, neuronal damage, glial dysfunction, demyelination, and inflammation have been studied as actionable biomarkers for MS and have provided insight into the pathology underlying the disease process of MS. However, these other biomarkers may be plagued with similar issues as NfL. Using biomarkers of a bioinformatic approach that includes cellular studies, micro-RNAs (miRNAs), extracellular vesicles (EVs), metabolomics, metabolites and the microbiome may prove to be useful in developing a more comprehensive panel that addresses the limitations of using a single biomarker. Therefore, more research with recent technological and statistical approaches is needed to identify novel and useful diagnostic and prognostic biomarker tools in MS.  相似文献   

13.
Neely MD  Swift LL  Montine TJ 《Lipids》2000,35(11):1249-1257
Cerebral spinal fluid (CSF) lipoproteins have become a focus of research since the observation that inheritance of particular alleles of the apolipoprotein E gene affects the risk of Alzheimer's disease (AD). There is evidence of increased lipid peroxidation in CSF lipoproteins from patients with AD, but the biological significance of this observation is not known. A characteristic of the AD brain is a disturbance of the neuronal microtubule organization. We have shown previously that 4-hydroxy-2(E)-nonenal, a major product of lipid peroxidation, causes disruption of neuronal microtubules and therefore tested whether oxidized CSF lipoproteins had the same effect. We exposed Neuro 2A cells to human CSF lipoproteins and analyzed the microtubule organization by immunofluorescence. In vitro oxidized human CSF lipoproteins caused disruption of the microtubule network, while their native (nonoxidized) counterparts did not. Microtubule disruption was observed after short exposures (1 h) and lipoprotein concentrations were present in CSF (20 μg/mL), conditions that did not result in loss of cell viability. Importantly, adult bovine CSF lipoproteins, oxidized under identical conditions, had no effect on the microtubule organization of Neuro 2A cells. Comparison of human and bovine CSF lipoproteins revealed similar oxidation-induced modifications of apolipoproteins E and A-I as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting. Fatty acid analysis revealed substantially lower amounts of unsaturated fatty acids in bovine CSF lipoproteins, when compared to their human counterparts. Our data therefore indicate that oxidized human CSF lipoproteins are detrimental to neuronal microtubules. This effect is species-specific, since equally oxidized bovine CSF lipoproteins left the neuronal microtubule organization unchanged.  相似文献   

14.
Parkinson’s disease (PD) and multiple system atrophy (MSA) belong to the neurodegenerative group of synucleinopathies; differential diagnosis between PD and MSA is difficult, especially at early stages, owing to their clinical and biological similarities. Thus, there is a pressing need to identify metabolic biomarkers for these diseases. The metabolic profile of the cerebrospinal fluid (CSF) is reported to be altered in PD and MSA; however, the altered metabolites remain unclear. We created a single network with altered metabolites in PD and MSA based on the literature and assessed biological functions, including metabolic disorders of the nervous system, inflammation, concentration of ATP, and neurological disorder, through bioinformatics methods. Our in-silico prediction-based metabolic networks are consistent with Parkinsonism events. Although metabolomics approaches provide a more quantitative understanding of biochemical events underlying the symptoms of PD and MSA, limitations persist in covering molecules related to neurodegenerative disease pathways. Thus, omics data, such as proteomics and microRNA, help understand the altered metabolomes mechanism. In particular, integrated omics and machine learning approaches will be helpful to elucidate the pathological mechanisms of PD and MSA. This review discusses the altered metabolites between PD and MSA in the CSF and omics approaches to discover diagnostic biomarkers.  相似文献   

15.
The term neurodegenerative disorders, encompasses a variety of underlying conditions, sporadic and/or familial and are characterized by the persistent loss of neuronal subtypes. These disorders can disrupt molecular pathways, synapses, neuronal subpopulations and local circuits in specific brain regions, as well as higher-order neural networks. Abnormal network activities may result in a vicious cycle, further impairing the integrity and functions of neurons and synapses, for example, through aberrant excitation or inhibition. The most common neurodegenerative disorders are Alzheimer’s disease, Parkinson’s disease, Amyotrophic Lateral Sclerosis and Huntington’s disease. The molecular features of these disorders have been extensively researched and various unique neurotherapeutic interventions have been developed. However, there is an enormous coercion to integrate the existing knowledge in order to intensify the reliability with which neurodegenerative disorders can be diagnosed and treated. The objective of this review article is therefore to assimilate these disorders’ in terms of their neuropathology, neurogenetics, etiology, trends in pharmacological treatment, clinical management, and the use of innovative neurotherapeutic interventions.  相似文献   

16.
The angiotensin-converting enzyme 2 (ACE2) is the receptor used by SARS-CoV and SARS-CoV-2 coronaviruses to attach to cells via the receptor-binding domain (RBD) of their viral spike protein. Since the start of the COVID-19 pandemic, several structures of protein complexes involving ACE2 and RBD as well as monoclonal antibodies and nanobodies have become available. We have leveraged the structural data to design peptides to target the interaction between the RBD of SARS-CoV-2 and ACE2 and SARS-CoV and ACE2, as contrasting exemplar, as well as the dimerization surface of ACE2 monomers. The peptides were modelled using our original method: PiPreD that uses native elements of the interaction between the targeted protein and cognate partner(s) that are subsequently included in the designed peptides. These peptides recapitulate stretches of residues present in the native interface plus novel and highly diverse conformations surrogating key interactions at the interface. To facilitate the access to this information we have created a freely available and dedicated web-based repository, PepI-Covid19 database, providing convenient access to this wealth of information to the scientific community with the view of maximizing its potential impact in the development of novel therapeutic and diagnostic agents.  相似文献   

17.
Mitochondrial dysfunction represents a critical event in the pathogenesis of Parkinson’s disease (PD). Increasing evidence demonstrates that disturbed mitochondrial dynamics and quality control play an important role in mitochondrial dysfunction in PD. Our previous study demonstrated that MPP+ induces mitochondrial fragmentation in vitro. In this study, we aimed to assess whether blocking MPTP-induced mitochondrial fragmentation by overexpressing Mfn2 affords neuroprotection in vivo. We found that the significant loss of dopaminergic neurons in the substantia nigra (SN) induced by MPTP treatment, as seen in wild-type littermate control mice, was almost completely blocked in mice overexpressing Mfn2 (hMfn2 mice). The dramatic reduction in dopamine neuronal fibers and dopamine levels in the striatum caused by MPTP administration was also partially inhibited in hMfn2 mice. MPTP-induced oxidative stress and inflammatory response in the SN and striatum were significantly alleviated in hMfn2 mice. The impairment of motor function caused by MPTP was also blocked in hMfn2 mice. Overall, our work demonstrates that restoration of mitochondrial dynamics by Mfn2 overexpression protects against neuronal toxicity in an MPTP-based PD mouse model, which supports the modulation of mitochondrial dynamics as a potential therapeutic target for PD treatment.  相似文献   

18.
Breast cancer (BC) is a molecularly heterogeneous disease that encompasses five major molecular subtypes (luminal A (LA), luminal B HER2 negative (LB-), luminal B HER2 positive (LB+), HER2 positive (HER2+) and triple negative breast cancer (TNBC)). BC treatment mainly depends on the identification of the specific subtype. Despite the correct identification, therapies could fail in some patients. Thus, further insights into the genetic and molecular status of the different BC subtypes could be very useful to improve the response of BC patients to the range of available therapies. In this way, we used gold nanoparticles (AuNPs, 12.96 ± 0.72 nm) as a scavenging tool in combination with Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) to quantitatively analyze the serum proteome alterations in the different breast cancer intrinsic subtypes. The differentially regulated proteins specific of each subtype were further analyzed with the bioinformatic tools STRING and PANTHER to identify the major molecular function, biological processes, cellular origin, protein class and biological pathways altered due to the heterogeneity in proteome of the different BC subtypes. Importantly, a profile of blood coagulation proteins was identified in the serum of HER2-overexpressing BC patients.  相似文献   

19.
Alzheimer’s disease (AD) is attracting considerable interest due to its increasing number of cases as a consequence of the aging of the global population. The mainstream concept of AD neuropathology based on pathological changes of amyloid β metabolism and the formation of neurofibrillary tangles is under criticism due to the failure of Aβ-targeting drug trials. Recent findings have shown that AD is a highly complex disease involving a broad range of clinical manifestations as well as cellular and biochemical disturbances. The past decade has seen a renewed importance of metabolic disturbances in disease-relevant early pathology with challenging areas in establishing the role of local micro-fluctuations in glucose concentrations and the impact of insulin on neuronal function. The role of the S100 protein family in this interplay remains unclear and is the aim of this research. Intracellularly the S100B protein has a protective effect on neurons against the toxic effects of glutamate and stimulates neurites outgrowth and neuronal survival. At high concentrations, it can induce apoptosis. The aim of our study was to extend current knowledge of the possible impact of hyper-glycemia and -insulinemia directly on neuronal S100B secretion and comparison to oxidative stress markers such as ROS, NO and DBSs levels. In this paper, we have shown that S100B secretion decreases in neurons cultured in a high-glucose or high-insulin medium, while levels in cell lysates are increased with statistical significance. Our findings demonstrate the strong toxic impact of energetic disturbances on neuronal metabolism and the potential neuroprotective role of S100B protein.  相似文献   

20.
Alzheimer’s disease (AD) is the most common neurodegenerative disease worldwide. Histopathologically, AD presents with two hallmarks: neurofibrillary tangles (NFTs), and aggregates of amyloid β peptide (Aβ) both in the brain parenchyma as neuritic plaques, and around blood vessels as cerebral amyloid angiopathy (CAA). According to the vascular hypothesis of AD, vascular risk factors can result in dysregulation of the neurovascular unit (NVU) and hypoxia. Hypoxia may reduce Aβ clearance from the brain and increase its production, leading to both parenchymal and vascular accumulation of Aβ. An increase in Aβ amplifies neuronal dysfunction, NFT formation, and accelerates neurodegeneration, resulting in dementia. In recent decades, therapeutic approaches have attempted to decrease the levels of abnormal Aβ or tau levels in the AD brain. However, several of these approaches have either been associated with an inappropriate immune response triggering inflammation, or have failed to improve cognition. Here, we review the pathogenesis and potential therapeutic targets associated with dysfunction of the NVU in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号