首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Growing body of evidence points to dysregulation of redox status in the brain as an important factor in the pathogenesis of schizophrenia. The aim of our study was to evaluate the effects of l-buthionine-(S,R)-sulfoximine (BSO), a glutathione (GSH) synthesis inhibitor, and 1-[2-Bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine dihydrochloride (GBR 12909), a dopamine reuptake inhibitor, given alone or in combination, to Sprague–Dawley pups during early postnatal development (p5–p16), on the time course of the onset of schizophrenia-like behaviors, and on the expression of brain-derived neurotrophic factor (BDNF) mRNA and its protein in the prefrontal cortex (PFC) and hippocampus (HIP) during adulthood. BSO administered alone decreased the levels of BDNF mRNA and its protein both in the PFC and HIP. Treatment with the combination of BSO + GBR 12909 also decreased BDNF mRNA and its protein in the PFC, but in the HIP, only the level of BDNF protein was decreased. Schizophrenia-like behaviors in rats were assessed at three time points of adolescence (p30, p42–p44, p60–p62) and in early adulthood (p90–p92) using the social interaction test, novel object recognition test, and open field test. Social and cognitive deficits first appeared in the middle adolescence stage and continued to occur into adulthood, both in rats treated with BSO alone or with the BSO + GBR 12909 combination. Behavior corresponding to positive symptoms in humans occurred in the middle adolescence period, only in rats treated with BSO + GBR 12909. Only in the latter group, amphetamine exacerbated the existing positive symptoms in adulthood. Our data show that rats receiving the BSO + GBR 12909 combination in the early postnatal life reproduced virtually all symptoms observed in patients with schizophrenia and, therefore, can be considered a valuable neurodevelopmental model of this disease.  相似文献   

2.
Background: Cognitive disorders associated with schizophrenia are closely linked to prefrontal cortex (PFC) dysfunction. Administration of the non-competitive NMDA receptor antagonist ketamine (KET) induces cognitive impairment in animals, producing effects similar to those observed in schizophrenic patients. In a previous study, we showed that KET (20 mg/kg) induces cognitive deficits in mice and that administration of clozapine (CLZ) reverses this effect. To identify biochemical mechanisms related to CLZ actions in the context of KET-induced impairment, we performed a biochemical analysis using the same experimental paradigm—acute and sub-chronic administration of these drugs (0.3 and 1 mg/kg). Methods: Since the effect of CLZ mainly depends on G-protein-related receptors, we used the Signaling PathwayFinder Kit to identify 84 genes involved in GPCR-related signal transduction and then verified the genes that were statistically significantly different on a larger group of mice using RT-PCR and Western blot analyses after the administration of acute and sub-chronic drugs. Results: Of the 84 genes involved in GPCR-related signal transduction, the expression of six, βarrestin1, βarrestin2, galanin receptor 2 (GalR2), dopamine receptor 2 (DRD2), metabotropic glutamate receptor 1 (mGluR1), and metabotropic glutamate receptor 5 (mGluR5), was significantly altered. Since these genes affect the levels of other signaling proteins, e.g., extracellular signal-regulated kinase 1/2 (ERK1/2), G protein-coupled receptor kinase 2 (Grk2), and G protein-gated inwardly rectifying potassium 3 (Girk3), we determined their levels in PFC using Western blot. Most of the observed changes occurred after acute treatment with 0.3 mg/kg CLZ. We showed that acute treatment with CLZ at a lower dose significantly increased βarrestin1 and ERK1/2. KET treatment induced the upregulation of βarrestin1. Joint administration of these drugs had no effect on the βarrestin1 level. Conclusion: The screening kit we used to study the expression of GPCR-related signal transduction allowed us to select several important genes affected by CLZ. However, the obtained data do not explain the mechanism of action of CLZ that is responsible for reversing KET-induced cognitive impairment.  相似文献   

3.
Aberrant neurogenesis in the subventricular zone (SVZ) and hippocampus (HIP) contributes to schizophrenia pathogenesis. Haloperidol (HAL) and olanzapine (OLA), commonly prescribed antipsychotics for schizophrenia treatment, affect neurogenesis too. The effect of HAL and OLA on an mHippoE-2 cell line was studied in vitro where we measured the cell number and projection length. In vivo, we studied the gene expression of DCX, Sox2, BDNF, and NeuN in the SVZ and HIP in an MK-801-induced animal schizophrenia model. Cells were incubated with HAL, OLA, and MK-801 for 24, 48, and 72 h. Animals were injected for 6 days with saline or MK801 (0.5 mg/kg), and from the 7th day with either vehicle HAL (1 mg/kg) or OLA (2 mg/kg), for the next 7 days. In vitro, HAL and OLA dose/time-dependently suppressed cells’ proliferation and shortened their projection length. HAL/OLA co-treatment with MK-801 for 24 h reversed HAL’s/OLA’s inhibitory effect. In vivo, HAL and OLA suppressed DCX and NeuN genes’ expression in the HIP and SVZ. MK-801 decreased DCX and NeuN genes’ expression in the HIP and OLA prevented this effect. The data suggest that subchronic HAL/OLA treatment can inhibit DCX and NeuN expression. In an MK-801 schizophrenia model, OLA reversed the MK-801 inhibitory effect on DCX and NeuN and HAL reversed the effect on DCX expression; however, only in the HIP.  相似文献   

4.
Schizophrenia is a complex psychopathology whose treatment is still challenging. Given the limitations of existing antipsychotics, there is urgent need for novel drugs with fewer side effects. SEP-363856 (SEP-856) is a novel psychotropic agent currently under phase III clinical investigation for schizophrenia treatment. In this study, we investigated the ability of an acute oral SEP-856 administration to modulate the functional activity of specific brain regions at basal levels and under glutamatergic or dopaminergic-perturbed conditions in adult rats. We found that immediate-early genes (IEGs) expression was strongly upregulated in the prefrontal cortex and, to a less extent, in the ventral hippocampus, suggesting an activation of these regions. Furthermore, SEP-856 was effective in preventing the hyperactivity induced by an acute injection of phencyclidine (PCP), but not of d-amphetamine (AMPH). The compound effectively normalized the PCP-induced increase in IEGs expression in the PFC at all doses tested, whereas only the highest dose determined the major modulations on AMPH-induced changes. Lastly, SEP-856 acute administration corrected the cognitive deficits produced by subchronic PCP administration. Taken together, our data provide further insights on SEP-856, suggesting that modulation of the PFC may represent an important mechanism for the functional and behavioural activity of this novel compound.  相似文献   

5.
Methamphetamine (METH) use disorder affects both sexes, with sex differences occurring in behavioral, structural, and biochemical consequences. The molecular mechanisms underlying these differences are unclear. Herein, we used a rat model to identify potential sex differences in the effects of METH on brain dopaminergic systems. Rats were trained to self-administer METH for 20 days, and a cue-induced drug-seeking test was performed on withdrawal days 3 and 30. Dopamine and its metabolites were measured in the prefrontal cortex (PFC), nucleus accumbens (NAc), dorsal striatum (dSTR), and hippocampus (HIP). Irrespective of conditions, in comparison to females, male rats showed increased 3,4-dihydroxyphenylalanine (DOPA) in the PFC, dSTR, and HIP; increased cys-dopamine in NAc; and increased 3,4-dihydroxyphenylethanol (DOPET) and 3,4-dihydroxyphenylacetic acid (DOPAC) in dSTR. Males also showed METH-associated decreases in DA levels in the HIP but increases in the NAc. Female rats showed METH-associated decreases in DA, DOPAL, and DOPAC levels in the PFC but increases in DOPET and DOPAC levels in the HIP. Both sexes showed METH-associated decreases in NAc DA metabolites. Together, these data document sex differences in METH SA-induced changes in DA metabolism. These observations provide further support for using sex as an essential variable when discussing therapeutic approaches against METH use disorder in humans.  相似文献   

6.
In spite of use of cannabidiol (CBD), a non-psychoactive cannabinoid, in pediatric patients with epilepsy, preclinical studies on its effects in immature animals are very limited. In the present study we investigated anti-seizure activity of CBD (10 and 60 mg/kg administered intraperitoneally) in two models of chemically induced seizures in infantile (12-days old) rats. Seizures were induced either with pentylenetetrazol (PTZ) or N-methyl-D-aspartate (NMDA). In parallel, brain and plasma levels of CBD and possible motor adverse effects were assessed in the righting reflex and the bar holding tests. CBD was ineffective against NMDA-induced seizures, but in a dose 60 mg/kg abolished the tonic phase of PTZ-induced generalized seizures. Plasma and brain levels of CBD were determined up to 24 h after administration. Peak CBD levels in the brain (996 ± 128 and 5689 ± 150 ng/g after the 10- and 60-mg/kg doses, respectively) were reached 1–2 h after administration and were still detectable 24 h later (120 ± 12 and 904 ± 63 ng/g, respectively). None of the doses negatively affected motor performance within 1 h after administration, but CBD in both doses blocked improvement in the bar holding test with repeated exposure to this task. Taken together, anti-seizure activity of CBD in infantile animals is dose and model dependent, and at therapeutic doses CBD does not cause motor impairment. The potential risk of CBD for motor learning seen in repeated motor tests has to be further examined.  相似文献   

7.
The present study was designed to probe the effects of Huperzine A (HupA) on diabetes-associated cognitive decline (DACD) using a streptozotocin (STZ)-injected rat model. Diabetic rats were treated with HupA (0.05 and 0.1 mg/kg) for seven weeks. Memory functions were evaluated by the water maze test. Nissl staining was selected for detecting neuronal loss. Protein and mRNA levels of brain-derived neurotrophic factor (BDNF) were analyzed by ELISA and real-time PCR, respectively. The activities of choline acetylase (ChAT), Acetylcholinesterase (AChE), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), NF-κB p65 unit, TNF-α, IL-1β, IL-6 and caspase-3 were measured using corresponding kits. After seven weeks, diabetic rats exhibited remarkable reductions in: body weight, percentage of time spent in target quadrant, number of times crossing the platform, ChAT and BDNF levels, SOD, GSH-Px and CAT accompanied with increases in neuronal damage, plasma glucose levels, escape latency, mean path length, AChE, MDA level as well as CAT, NF-κB p65 unit, TNF-α, IL-1β, IL-6 and caspase-3 in cerebral cortex and hippocampus. Supplementation with HupA significantly and dose-dependently reversed the corresponding values in diabetes. It is concluded that HupA ameliorates DACD via modulating BDNF, oxidative stress, inflammation and apoptosis.  相似文献   

8.
The mechanisms of resistance to antidepressant drugs is a key and still unresolved problem of psychopharmacology. Serotonin (5-HT) and brain-derived neurotrophic factor (BDNF) play a key role in the therapeutic effect of many antidepressants. Tryptophan hydroxylase 2 (TPH2) is the rate-limiting enzyme in 5-HT synthesis in the brain. We used zebrafish (Danio rerio) as a promising model organism in order to elucidate the effect of TPH2 deficiency caused by p-chlorophenylalanine (pCPA) on the alterations in behavior and expression of 5-HT-related (Tph2, Slc6a4b, Mao, Htr1aa, Htr2aa) and BDNF-related (Creb, Bdnf, Ntrk2a, Ngfra) genes in the brain after prolonged treatment with two antidepressants, inhibitors of 5-HT reuptake (fluoxetine) and oxidation (pargyline). In one experiment, zebrafish were treated for 72 h with 0.2 mg/L fluoxetine, 2 mg/L pCPA, or the drugs combination. In another experiment, zebrafish were treated for 72 h with 0.5 mg/L pargyline, 2 mg/L pCPA, or the drugs combination. Behavior was studied in the novel tank diving test, mRNA levels were assayed by qPCR, 5-HT and its metabolite concentrations were measured by HPLC. The effects of interaction between pCPA and the drugs on zebrafish behavior were observed: pCPA attenuated “surface dwelling” induced by the drugs. Fluoxetine decreased mRNA levels of Tph2 and Htr2aa genes, while pargyline decreased mRNA levels of Slc6a4b and Htr1aa genes. Pargyline reduced Creb, Bdnf and Ntrk2a genes mRNA concentration only in the zebrafish treated with pCPA. The results show that the disruption of the TPH2 function can cause a refractory to antidepressant treatment.  相似文献   

9.
Neuroprotection of lithium for axotomized retinal ganglion cells (RGCs) is attributed to upregulated intraretinal Bcl-2. As lithium also upregulates brain-derived neurotrophic factor (BDNF) which can rescue axotomized RGCs, it is hypothesized that lithium could protect RGCs through BDNF. This study investigated this hypothesis and a possible relationship between the dose and protection of lithium. All adult experimental rats received daily intraperitoneal injections of lithium chloride (LiCl) at 30, 60 or 85 mg/kg·bw until they were euthanized 2, 7 or 14 days after left intraorbital optic nerve (ON) transection. Our results revealed that RGC densities promoted and declined with increased dose of LiCl and the highest RGC densities were always in the 60 mg/kg·bw LiCl group at both 7 and 14 day points. Similar promotion and decline in the mRNA and protein levels of intraretinal BDNF were also found at the 14 day point, while such BDNF levels increased in the 30 mg/kg·bw LiCl group but peaked in the 60 and 85 mg/kg·bw LiCl groups at the 7 day point. These findings suggested that lithium can delay the death of axotomized RGCs in a dose-dependent manner within a certain period after ON injury and such beneficial effect is interrelated with an upregulated level of intraretinal BDNF.  相似文献   

10.
11.
MK-801, an NMDA receptor antagonist, and scopolamine, a cholinergic receptor blocker, are widely used as tool compounds to induce learning and memory deficits in animal models to study schizophrenia or Alzheimer-type dementia (AD), respectively. Memory impairments are observed after either acute or chronic administration of either compound. The present experiments were performed to study the nitric oxide (NO)-related mechanisms underlying memory dysfunction induced by acute or chronic (14 days) administration of MK-801 (0.3 mg/kg, i.p.) or scopolamine (1 mg/kg, i.p.). The levels of L-arginine and its derivatives, L-citrulline, L-glutamate, L-glutamine and L-ornithine, were measured. The expression of constitutive nitric oxide synthases (cNOS), dimethylaminohydrolase (DDAH1) and protein arginine N-methyltransferases (PMRTs) 1 and 5 was evaluated, and the impact of the studied tool compounds on cGMP production and NMDA receptors was measured. The studies were performed in both the cortex and hippocampus of mice. S-nitrosylation of selected proteins, such as GLT-1, APP and tau, was also investigated. Our results indicate that the availability of L-arginine decreased after chronic administration of MK-801 or scopolamine, as both the amino acid itself as well as its level in proportion to its derivatives (SDMA and NMMA) were decreased. Additionally, among all three methylamines, SDMA was the most abundant in the brain (~70%). Administration of either compound impaired eNOS-derived NO production, increasing the monomer levels, and had no significant impact on nNOS. Both compounds elevated DDAH1 expression, and slight decreases in PMRT1 and PMRT5 in the cortex after scopolamine (acute) and MK-801 (chronic) administration were observed in the PFC, respectively. Administration of MK-801 induced a decrease in the cGMP level in the hippocampus, accompanied by decreased NMDA expression, while increased cGMP production and decreased NMDA receptor expression were observed after scopolamine administration. Chronic MK-801 and scopolamine administration affected S-nitrosylation of GLT-1 transport protein. Our results indicate that the analyzed tool compounds used in pharmacological models of schizophrenia or AD induce changes in NO-related pathways in the brain structures involved in cognition. To some extent, the changes resemble those observed in human samples.  相似文献   

12.
Background: Status epilepticus (SE) is a neurological disorder characterized by a prolonged epileptic activity followed by subsequent epileptogenic processes. The aim of the present study was to evaluate the early effects of topiramate (TPM) and lacosamide (LCM) treatment on oxidative stress and inflammatory damage in a model of pilocarpine-induced SE. Methods: Male Wistar rats were randomly divided into six groups and the two antiepileptic drugs (AEDs), TPM (40 and 80 mg/kg, i.p.) and LCM (10 and 30 mg/kg, i.p.), were injected three times repeatedly after pilocarpine administration. Rats were sacrificed 24 h post-SE and several parameters of oxidative stress and inflammatory response have been explored in the hippocampus. Results: The two drugs TPM and LCM, in both doses used, succeeded in attenuating the number of motor seizures compared to the SE-veh group 30 min after administration. Pilocarpine-induced SE decreased the superoxide dismutase (SOD) activity and reduced glutathione (GSH) levels while increasing the catalase (CAT) activity, malondialdehyde (MDA), and IL-1β levels compared to the control group. Groups with SE did not affect the TNF-α levels. The treatment with a higher dose of 30 mg/kg LCM restored to control level the SOD activity in the SE group. The two AEDs, in both doses applied, also normalized the CAT activity and MDA levels to control values. In conclusion, we suggest that the antioxidant effect of TPM and LCM might contribute to their anticonvulsant effect against pilocarpine-induced SE, whereas their weak anti-inflammatory effect in the hippocampus is a consequence of reduced SE severity.  相似文献   

13.
We investigated whether δ-opioid receptor (DOR)-induced neuroprotection involves the brain-derived neurotrophic factor (BDNF) pathway. We studied the effect of DOR activation on the expression of BDNF and other proteins in the cortex of C57BL/6 mice exposed to hypoxia (10% of oxygen) for 1–10 days. The results showed that: (1) 1-day hypoxia had no appreciable effect on BDNF expression, while 3- and 10-day hypoxia progressively decreased BDNF expression, resulting in 37.3% reduction (p < 0.05) after 10-day exposure; (2) DOR activation with UFP-512 (1 mg/kg, i.p., daily) partially reversed the hypoxia-induced reduction of BDNF expression in the 3- or 10-day exposed cortex; (3) DOR activation partially reversed the hypoxia-induced reduction in functional TrkB (140-kDa) and attenuated hypoxia-induced increase in truncated TrkB (90-kDa) in the 3- or 10-day hypoxic cortex; and (4) prolonged hypoxia (10 days) significantly increased TNF-α level and decreased CD11b expression in the cortex, which was completely reversed following DOR activation; and (5) there was no significant change in pCREB and pATF-1 levels in the hypoxic cortex. We conclude that prolonged hypoxia down-regulates BDNF-TrkB signaling leading to an increase in TNF-α in the cortex, while DOR activation up-regulates BDNF-TrkB signaling thereby decreasing TNF-α levels in the hypoxic cortex.  相似文献   

14.
Previous preclinical studies have demonstrated the otoprotective effects of resveratrol (RV) at low doses. This study aimed to investigate the dose-dependent effects of RV in rats with cisplatin (CXP)-induced hearing loss. Sprague-Dawley rats (8-weeks old) were divided into six treatment groups (n = 12/group) and treated as follows: control, 0.5 mg/kg RV, 50 mg/kg RV, CXP, 0.5 mg/kg RV + CXP), and 50 mg/kg RV + CXP groups. CXP (3 mg/kg) was intraperitoneally injected for 5 days. RV (0.5 or 50 mg/kg) was intraperitoneally injected for 10 days from the first day of CXP administration. Auditory brainstem response (ABR) thresholds were measured before and within 3 days at the end of the drug administration. Cochlear tissues were harvested, and the outer hair cells were examined using cochlear whole mounts. The mRNA expression of NFκB, IL6, IL1β, and CYP1A1, and protein levels of aryl hydrocarbon receptor (AhR) and cytosolic and nuclear receptor for advanced glycation endproducts (RAGE) were evaluated. The ABR threshold increased in the 50 mg/kg RV and CXP groups at 4, 8, 16, and 32 kHz. The 0.5 mg/kg RV + CXP group demonstrated decreased hearing thresholds at 4 and 32 kHz compared to the CXP group. Cochlear whole-mount analysis revealed loss of outer hair cells in the 50 mg/kg RV and CXP groups and partial prevention of these cells in the 0.5 mg/kg RV + CXP group. The mRNA expressions of NFκB, IL6, and IL1β were increased in the 50 mg/kg RV and CXP groups compared to the control group. In contrast, these levels were decreased in the 0.5 mg/kg RV + CXP group compared to the CXP group. The mRNA expression of CYP1A1 was increased in the CXP group, while it was decreased in the 0.5 mg/kg RV + CXP group compared to the control group. The protein levels of AhR and cytosolic RAGE decreased in the 0.5 mg/kg RV group. Low-dose RV had partial otoprotective effects on CXP ototoxicity. The otoprotective effects of RV may be mediated through anti-oxidative (CYP1A1 and RAGE) and anti-inflammatory (NFκB, IL6, and IL1β) responses. High-dose RV exerted an inflammatory response and did not ameliorate CXP-induced ototoxicity.  相似文献   

15.
Perinatal hypoxia is a major cause of infant brain damage, lifelong neurological disability, and infant mortality. N-Acetyl-Cysteine (NAC) is a powerful antioxidant that acts directly as a scavenger of free radicals. We hypothesized that maternal-antenatal and offspring-postnatal NAC can protect offspring brains from hypoxic brain damage.Sixty six newborn rats were randomized into four study groups. Group 1: Control (CON) received no hypoxic intervention. Group 2: Hypoxia (HYP)-received hypoxia protocol. Group 3: Hypoxia-NAC (HYP-NAC). received hypoxia protocol and treated with NAC following each hypoxia episode. Group 4: NAC Hypoxia (NAC-HYP) treated with NAC during pregnancy, pups subject to hypoxia protocol. Each group was evaluated for: neurological function (Righting reflex), serum proinflammatory IL-6 protein levels (ELISA), brain protein levels: NF-κB p65, neuronal nitric oxide synthase (nNOS), TNF-α, and IL-6 (Western blot) and neuronal apoptosis (histology evaluation with TUNEL stain). Hypoxia significantly increased pups brain protein levels compared to controls. NAC administration to dams or offspring demonstrated lower brain NF-κB p65, nNOS, TNF-α and IL-6 protein levels compared to hypoxia alone. Hypoxia significantly increased brain apoptosis as evidenced by higher grade of brain TUNEL reaction. NAC administration to dams or offspring significantly reduce this effect. Hypoxia induced acute sensorimotor dysfunction. NAC treatment to dams significantly attenuated hypoxia-induced acute sensorimotor dysfunction. Prophylactic NAC treatment of dams during pregnancy confers long-term protection to offspring with hypoxia associated brain injury, measured by several pathways of injury and correlated markers with pathology and behavior. This implies we may consider prophylactic NAC treatment for patients at risk for hypoxia during labor.  相似文献   

16.
目的探讨短暂前脑缺血再灌注(transient forebrain ischemia-reperfusion,I/R)对脑源性神经营养因子(brainderived neurotrophic factor,BDNF)蛋白及mRNA表达的影响,为进一步探索大鼠海马CA1区神经元损伤机制提供新的思路。方法将雄性SD大鼠随机分为control组、sham组和I/R组,利用Western blot和荧光定量PCR分析I/R后大鼠BDNF蛋白及mRNA表达的变化;染色质免疫共沉淀(chromatin immunoprecipitation,ChIP)试验检测I/R后大鼠BDNF基因启动子上H3K27的乙酰化水平。结果与control组相比,sham组大鼠CA1和CA3区BDNF蛋白和mRNA表达差异无统计学意义(P>0.05)。与sham组相比,I/R组大鼠CA1区BDNF蛋白表达显著下降(P<0.001),而CA3区BDNF蛋白表达增高(P<0.05);I/R组大鼠CA1区BDNF mRNAⅠ、Ⅱ和Ⅵ的表达均显著增高(P<0.01),而mRNAⅣ的表达显著下降(P<0.01),在CA3区4种mRNA均显著增高(P<0.01)。与sham组相比,I/R组大鼠CA1区BDNF启动子4的H3K27乙酰化水平显著下降(P<0.001),而CA3区BDNF启动子区域H3K27乙酰化水平增高(P<0.01)。结论I/R诱导大鼠海马CA1区BDNF蛋白及mRNA表达降低,并改变了BDNF基因启动子区乙酰化水平,为进一步研究BDNF表达降低引起神经元死亡的机制提供了新的方向。  相似文献   

17.
This study was performed to investigate the immune enhancement effect of glycine nano-selenium, a microelement on H9N2 avian influenza virus vaccine (H9N2 AIV vaccine) in mice. Fifty (50) Specific Pathogen Free Kunming mice aged 4–6 weeks (18–20 g Body weight) were randomly divided into five groups: control normal group, which received no immunization + 0.5 mL 0.9% normal saline, positive control group, which received H9N2 AIV vaccine + 0.5 mL 0.9% normal saline, 0.25 mg/kg selenium group, which received H9N2 AIV vaccine + 0.5 mL 0.25 mg/kg selenium solution, 0.5 mg/kg selenium group, which received H9N2 AIV vaccine + 0.5 mL 0.5 mg/kg selenium solution, and 1 mg/kg selenium group, which received H9N2 AIV vaccine + 0.5 mL 1 mg/kg selenium solution. Hematoxylin and eosin staining, enzyme linked immunosorbent assay (ELISA), and quantitative real time polymerase chain reaction (qRT-PCR) methods were used to investigate the pathological changes, immunoglobulin levels, and cytokine gene expressions in this study. The results showed that all tested doses (0.25 mg/kg, 0.5 mg/kg and 1.00 mg/kg) of glycine nano-selenium did not lead to poisoning in mice. In addition, when compared to the positive control group, glycine nano-selenium increased the immunoglobin indexes (IgA, IgG, IgM and AIV-H9 IgG in serum) as well as the mRNA levels of IL-1β, IL-6 and INF-γ in the liver, lungs, and spleen (p < 0.05). In summary, glycine nano-selenium could enhance the efficacy of avian influenza vaccine.  相似文献   

18.
Patients with schizophrenia, and rodent models of the disease, both exhibit suppressed neurogenesis, with antipsychotics possibly enhancing neurogenesis in pre-clinical models. Nestin, a cytoskeletal protein, is implicated in neuronal differentiation and adult neurogenesis. We hypothesized that schizophrenia pathogenesis involves nestin downregulation; however, few studies have related nestin to schizophrenia. We assessed nestin protein concentration, prepulse inhibition (PPI), and social interaction in the MK-801 model of schizophrenia, with or without antipsychotic (clozapine) treatment. Adult male Sprague–Dawley rats were intraperitoneally administered saline or MK-801 (0.1 mg/kg) to produce a schizophrenia-like phenotype, with concomitant subcutaneous injections of vehicle or clozapine (5 mg/kg). PPI was assessed on days 1, 8, and 15, and social interaction was assessed on day 4. Hippocampus tissue samples were dissected for Western blotting of nestin concentration. MK-801 alone did not alter nestin concentration, while clozapine alone enhanced hippocampal nestin concentration; this effect was not apparent in animals with MK-801 and clozapine co-administration. MK-801 also produced schizophrenia-like PPI disruptions, some of which were reversed by clozapine. Social interaction deficits were not detected in this model. This is the first report of clozapine-induced enhancements of hippocampal nestin concentration that might be mediated by NMDA receptors. Future studies will explore the impact of neurodevelopmental nestin concentration on symptom onset and antipsychotic treatment.  相似文献   

19.
复合絮凝剂对染料废水的脱色作用   总被引:4,自引:0,他引:4  
用羧甲基壳聚糖(CMCTS)复合聚合氯化铁(PFC)对相对分子质量较小的活性染料模拟废水进行脱色处理.结果表明,引入PFC作为助凝剂的脱色效果优于单纯使用CMCTS.采用此复合絮凝剂处理染料废水的最佳条件为pH=5,CMCTS和PFC的投加质量浓度分别为90 mg/L和2 mg/L.在此优化条件下,染料废水的脱色率可达93.8%,COD去除率达89.6%.  相似文献   

20.
Nonylphenol (NP) is a degradation product of nonylphenol polyethoxylates, which are widely used in the production of industrial and consumer surfactants. The aim of the present study was to evaluate the effect of NP on the antioxidant capacity and cognitive ability of mice. NP was given orally by gavages at doses of 0, 50, 100, and 200 mg kg(-1) d(-1) for 90 days. The results showed that NP significantly decreased the activity of superoxide dismutases (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) and at the same time increased malondialdehyde (MDA) levels in mice brains. Exploration, memory function and ability to learn a novel task were significantly decreased in NP fed mice. These results indicate that chronic high dose of NP exposure has the potential to generate oxidative stress and induce the cognitive impairment in male mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号