首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on oxidized regenerated cellulose (ORC), several hemostyptic materials, such as Tabotamp®, Equicel® and Equitamp®, have been developed to approach challenging hemostasis in neurosurgery. The present study compares ORC that differ in terms of compositions and properties, regarding their structure, solubility, pH values and effects on neuronal tissue. Cytotoxicity was detected via DNA-binding fluorescence dye in Schwann cells, astrocytes, and neuronal cells. Additionally, organotypic hippocampal slice cultures (OHSC) were analyzed, using propidium iodide, hematoxylin-eosin, and isolectin B4 staining to investigate the cellular damage, cytoarchitecture, and microglia activation. Whereas Equicel® led to a neutral pH, Tabotamp® (pH 2.8) and Equitamp® (pH 4.8) caused a significant reduction of pH (p < 0.001). Equicel® and Tabotamp® increased cytotoxicity significantly in several cell lines (p < 0.01). On OHSC, Tabotamp® and Equicel® led to a stronger and deeper damage to the neuronal tissue than Equitamp® or gauze (p < 0.01). Equicel® increased strongly the number of microglia cells after 24 h (p < 0.001). Microglia cells were not detectable after Tabotamp® treatment, presumably due to an artifact caused by strong pH reduction. In summary, our data imply the use of Equicel®, Tabotamp® or Equitamp® for specific applications in distinct clinical settings depending on their localization or tissue properties.  相似文献   

2.
Different manufacturing processes and storage conditions of biotherapeutics can lead to a significant variability in drug products arising from chemical and enzymatic post-translational modifications (PTMs), resulting in the co-existence of a plethora of proteoforms with different physicochemical properties. To unravel the heterogeneity of these proteoforms, novel approaches employing strong cation-exchange (SCX) high-performance liquid chromatography (HPLC) hyphenated to mass spectrometry (MS) using a pH gradient of volatile salts have been developed in recent years. Here, we apply an established SCX-HPLC-MS method to characterize and compare two rituximab-based biotherapeutics, the originator MabThera® and its Indian copy product Reditux™. The study assessed molecular differences between the two drug products in terms of C-terminal lysine variants, glycosylation patterns, and other basic and acidic variants. Overall, MabThera® and Reditux™ displayed differences at the molecular level. MabThera® showed a higher degree of galactosylated and sialylated glycoforms, while Reditux™ showed increased levels of oligomannose and afucosylated glycoforms. Moreover, the two drug products showed differences in terms of basic variants such as C-terminal lysine and N-terminal truncation, present in Reditux™ but not in MabThera®. This study demonstrates the capability of this fast SCX-HPLC-MS approach to compare different drug products and simultaneously assess some of their quality attributes.  相似文献   

3.
Prevalences of Campylobacter (C.) jejuni infections are progressively rising globally. Given that probiotic feed additives, such as the commercial product Aviguard®, have been shown to be effective in reducing enteropathogens, such as Salmonella, in vertebrates, including livestock, we assessed potential anti-pathogenic and immune-modulatory properties of Aviguard® during acute C. jejuni-induced murine enterocolitis. Therefore, microbiota-depleted IL-10−/− mice were infected with C. jejuni strain 81-176 by gavage and orally treated with Aviguard® or placebo from day 2 to 4 post-infection. The applied probiotic bacteria could be rescued from the intestinal tract of treated mice, but with lower obligate anaerobic bacterial counts in C. jejuni-infected as compared to non-infected mice. Whereas comparable gastrointestinal pathogen loads could be detected in both groups until day 6 post-infection, Aviguard® treatment resulted in improved clinical outcome and attenuated apoptotic cell responses in infected large intestines during acute campylobacteriosis. Furthermore, less distinct pro-inflammatory immune responses could be observed not only in the intestinal tract, but also in extra-intestinal compartments on day 6 post-infection. In conclusion, we show here for the first time that Aviguard® exerts potent disease-alleviating effects in acute C. jejuni-induced murine enterocolitis and might be a promising probiotic treatment option for severe campylobacteriosis in humans.  相似文献   

4.
Novel and unique properties of nanomaterials, which are not apparent in larger-size forms of the same material, encourage the undertaking of studies exploring the multifaced effects of nanomaterials on plants. The results of such studies are not only scientifically relevant but, additionally, can be implemented to plant production and/or breeding. This study aimed to verify the applicability of silver nanoparticles (AgNPs) as a mutagen in chrysanthemum breeding. Chrysanthemum × grandiflorum (Ramat.) Kitam. ‘Lilac Wonder’ and ‘Richmond’ leaf explants were cultured on the modified MS medium supplemented with 0.6 mg·L−1 6-benzylaminopurine (BAP) and 2 mg·L−1 indole-3-acetic acid (IAA) and treated with AgNPs (spherical; 20 nm in diameter size; 0, 50, and 100 mg·L−1). AgNPs strongly suppressed the capability of leaf explants to form adventitious shoots and the efficiency of shoot regeneration. The content of primary and secondary metabolites (chlorophyll a, chlorophyll b, total chlorophylls, carotenoids, anthocyanins, phenolic compounds) and the activity of enzymatic antioxidants (superoxide dismutase and guaiacol peroxide) in leaf explants varied depending on the AgNPs treatment and age of culture. Phenotype variations of ex vitro cultivated chrysanthemums, covering the color and pigment content in the inflorescence, were detected in one 50 mg·L−1 AgNPs-derived and five 100 mg·L−1 AgNPs-derived ‘Lilac Wonder’ plants and were manifested as the color change from pink to burgundy-gold. However, no changes in inflorescence color/shape were found among AgNPs-treated ‘Richmond’ chrysanthemums. On the other hand, the stem height, number of leaves, and chlorophyll content in leaves varied depending on the AgNPs treatment and the cultivar analyzed. A significant effect of AgNPs on the genetic variation occurrence was found. A nearly two-fold higher share of polymorphic products, in both cultivars studied, was generated by RAPD markers than by SCoTs. To conclude, protocols using leaf explant treatment with AgNPs can be used as a novel breeding technique in chrysanthemum. However, the individual cultivars may differ in biochemical response, the efficiency of in vitro regeneration, genetic variation, and frequency of induced mutations in flowering plants.  相似文献   

5.
Anorganic bovine bone matrix (Bio-Oss®) has been used for a long time for bone graft regeneration, but has poor osteoinductive capability. The use of recombinant human bone morphogenetic protein-2 (rhBMP-2) has been suggested to overcome this limitation of Bio-Oss®. In the present study, heparin-mediated rhBMP-2 was combined with Bio-Oss® in animal experiments to investigate bone formation performance; heparin was used to control rhBMP-2 release. Two calvarial defects (8 mm diameter) were formed in a white rabbit model and then implanted or not (controls) with Bio-Oss® or BMP-2/Bio-Oss®. The Bio-Oss® and BMP-2/Bio-Oss® groups had significantly greater new bone areas (expressed as percentages of augmented areas) than the non-implanted controls at four and eight weeks after surgery, and the BMP-2/Bio-Oss® group (16.50 ± 2.87 (n = 6)) had significantly greater new bone areas than the Bio-Oss® group (9.43 ± 3.73 (n = 6)) at four weeks. These findings suggest that rhBMP-2 treated heparinized Bio-Oss® markedly enhances bone regeneration.  相似文献   

6.
7.
The “normal” immune response to an insult triggers a highly regulated response determined by the interaction of various immunocompetent cells with pro- and anti-inflammatory cytokines. Under pathologic conditions, the massive elevation of cytokine levels (“cytokine storm”) could not be controlled until the recent development of hemoadsorption devices that are able to extract a variety of different DAMPs, PAMPs, and metabolic products from the blood. CytoSorb® has been approved for adjunctive sepsis therapy since 2011. This review aims to summarize theoretical knowledge, in vitro results, and clinical findings to provide the clinician with pragmatic guidance for daily practice. English-language and peer-reviewed literature identified by a selective literature search in PubMed and published between January 2016 and May 2021 was included. Hemoadsorption can be used successfully as adjunct to a complex therapeutic regimen for various conditions. To the contrary, this nonspecific intervention may potentially worsen patient outcomes in complex immunological processes. CytoSorb® therapy appears to be safe and useful in various diseases (e.g., rhabdomyolysis, liver failure, or intoxications) as well as in septic shock or cytokine release syndrome, although a conclusive assessment of treatment benefit is not possible and no survival benefit has yet been demonstrated in randomized controlled trials.  相似文献   

8.
Loss of fibrinogen is a feature of trauma-induced coagulopathy (TIC), and restoring this clotting factor is protective against hemorrhages. We compared the efficacy of cryoprecipitate, and of the fibrinogen concentrates RiaSTAP® and FibCLOT® in restoring the clot integrity in models of TIC. Cryoprecipitate and FibCLOT® produced clots with higher maximal absorbance and enhanced resistance to lysis relative to RiaSTAP®. The fibrin structure of clots, comprising cryoprecipitate and FibCLOT®, mirrored those of normal plasma, whereas those with RiaSTAP® showed stunted fibers and reduced porosity. The hemodilution of whole blood reduced the maximum clot firmness (MCF) as assessed by thromboelastography. MCF could be restored with the inclusion of 1 mg/mL of fibrinogen, but only FibCLOT® was effective at stabilizing against lysis. The overall clot strength, measured using the Quantra® hemostasis analyzer, was restored with both fibrinogen concentrates but not cryoprecipitate. α2antiplasmin and plasminogen activator inhibitor-1 (PAI-1) were constituents of cryoprecipitate but were negligible in RiaSTAP® and FibCLOT®. Interestingly, cryoprecipitate and FibCLOT® contained significantly higher factor XIII (FXIII) levels, approximately three-fold higher than RiaSTAP®. Our data show that 1 mg/mL fibrinogen, a clinically achievable concentration, can restore adequate clot integrity. However, FibCLOT®, which contained more FXIII, was superior in normalizing the clot structure and in stabilizing hemodiluted clots against mechanical and fibrinolytic degradation.  相似文献   

9.
Tumor-associated cell-free DNAs (cfDNA) play an important role in the promotion of metastases. Previous studies proved the high antimetastatic potential of bovine pancreatic DNase I and identified short interspersed nuclear elements (SINEs) and long interspersed nuclear elements (LINEs)and fragments of oncogenes in cfDNA as the main molecular targets of enzyme in the bloodstream. Here, recombinant human DNase I (commercial name Pulmozyme®), which is used for the treatment of cystic fibrosis in humans, was repurposed for the inhibition of lung metastases in the B16 melanoma model in mice. We found that Pulmozyme® strongly reduced migration and induced apoptosis of B16 cells in vitro and effectively inhibited metastases in lungs and liver in vivo. Pulmozyme® was shown to be two times more effective when administered intranasally (i.n.) than bovine DNase I, but intramuscular (i.m.) administration forced it to exhibit as high an antimetastatic activity as bovine DNase I. Both DNases administered to mice either i.m. or i.n. enhanced the DNase activity of blood serum to the level of healthy animals, significantly decreased cfDNA concentrations, efficiently degraded SINE and LINE repeats and c-Myc fragments in the bloodstream and induced apoptosis and disintegration of neutrophil extracellular traps in metastatic foci; as a result, this manifested as the inhibition of metastases spread. Thus, Pulmozyme®, which is already an approved drug, can be recommended for use in the treatment of lung metastases.  相似文献   

10.
Inappropriate wound healing (WH) management can cause significant comorbidities, especially in patients affected by chronic and metabolic diseases, such as diabetes. WH involves several different, partially overlapping processes, including hemostasis, inflammation, cell proliferation, and remodeling. Oxidative stress in WH contributes to WH impairment because of the overexpression of radical oxygen species (ROS) and nitrogen species (RNS). This study aimed to evaluate the in vitro antioxidative action of a gel containing a Propionibacterium extract (Emorsan® Gel) and assess its skin re-epithelialization properties in a mouse model of WH. The scavenging effects of the bacterial extract were assessed in vitro through the ABTS and DPPH assays and in L-929 murine fibroblasts. The effects of the Emorsan® Gel were studied in vivo in a murine model of WH. After WH induction, mice were treated daily with vehicle or Emorsan® Gel for 6 or 12 days. According to the in vitro tests, the Propionibacterium extract exerted an inhibitory effect on ROS and RNS, consequently leading to the reduction in malondialdehyde (MDA) and nitrite levels. Before proceeding with the in vivo study, the Emorsan® Gel was verified to be unabsorbed. Therefore, the observed effects could be ascribed to a local action. The results obtained in vivo showed that through local reduction of oxidative stress and inflammation (IL-1β, TNF-α), the Emorsan® Gel significantly reduced the infiltration of mast cells into the injured wound, leading to the amelioration of symptoms such as itch and skin irritation. Therefore, the Emorsan® Gel improved the speed and percentage of wound area closure by improving the tissue remodeling process, prompting vascular–endothelial growth factor (VEGF) and transforming growth factor (TGF)- β production and reducing the expression of adhesion molecules. Emorsan® Gel, by its ability to inhibit free radicals, could reduce local inflammation and oxidative stress, thus enhancing the speed of wound healing.  相似文献   

11.
Background: Cardiovascular surgery is confronted by a lack of suitable materials for patch repair. Acellular animal tissues serve as an abundant source of promising biomaterials. The aim of our study was to explore the bio-integration of decellularized or recellularized pericardial matrices in vivo. Methods: Porcine (allograft) and ovine (heterograft, xenograft) pericardia were decellularized using 1% sodium dodecyl sulfate ((1) Allo-decel and (2) Xeno-decel). We used two cell types for pressure-stimulated recellularization in a bioreactor: autologous adipose tissue-derived stromal cells (ASCs) isolated from subcutaneous fat of pigs ((3) Allo-ASC and (4) Xeno-ASC) and allogeneic Wharton’s jelly mesenchymal stem cells (WJCs) ((5) Allo-WJC and (6) Xeno-WJC). These six experimental patches were implanted in porcine carotid arteries for one month. For comparison, we also implanted six types of control patches, namely, arterial or venous autografts, expanded polytetrafluoroethylene (ePTFE Propaten® Gore®), polyethylene terephthalate (PET Vascutek®), chemically stabilized bovine pericardium (XenoSure®), and detoxified porcine pericardium (BioIntegral® NoReact®). The grafts were evaluated through the use of flowmetry, angiography, and histological examination. Results: All grafts were well-integrated and patent with no signs of thrombosis, stenosis, or aneurysm. A histological analysis revealed that the arterial autograft resembled a native artery. All other control and experimental patches developed neo-adventitial inflammation (NAI) and neo-intimal hyperplasia (NIH), and the endothelial lining was present. NAI and NIH were most prominent on XenoSure® and Xeno-decel and least prominent on NoReact®. In xenografts, the degree of NIH developed in the following order: Xeno-decel > Xeno-ASC > Xeno-WJC. NAI and patch resorption increased in Allo-ASC and Xeno-ASC and decreased in Allo-WJC and Xeno-WJC. Conclusions: In our setting, pre-implant seeding with ASC or WJC had a modest impact on vascular patch remodeling. However, ASC increased the neo-adventitial inflammatory reaction and patch resorption, suggesting accelerated remodeling. WJC mitigated this response, as well as neo-intimal hyperplasia on xenografts, suggesting immunomodulatory properties.  相似文献   

12.
13.
Water deficit causes substantial yield losses that climate change is going to make even more problematic. Sustainable agricultural practices are increasingly developed to improve plant tolerance to abiotic stresses. One innovative solution amongst others is the integration of plant biostimulants in agriculture. In this work, we investigate for the first time the effects of the biostimulant –Leafamine®–a protein hydrolysate on greenhouse lettuce (Lactuca sativa L.) grown under well-watered and water-deficit conditions. We examined the physiological and metabolomic water deficit responses of lettuce treated with Leafamine® (0.585 g/pot) or not. Root application of Leafamine® increased the shoot fresh biomass of both well-watered (+40%) and deficit-irrigated (+20%) lettuce plants because the projected leaf area increased. Our results also indicate that Leafamine® application could adjust the nitrogen metabolism by enhancing the total nitrogen content, amino acid (proline) contents and the total protein level in lettuce leaves, irrespective of the water condition. Osmolytes such as soluble sugars and polyols, also increased in Leafamine®-treated lettuce. Our findings suggest that the protective effect of Leafamine is a widespread change in plant metabolism and could involve ABA, putrescine and raffinose.  相似文献   

14.
Although the full primary structures of the alfa and beta subunits of reference r-hFSH-alfa and its biosimilars are identical, cell context-dependent differences in the expressing cell lines and manufacturing process can lead to variations in glycosylation profiles. In the present study, we compared the structural features of reference r-hFSH-alfa with those of five biosimilar preparations approved in different global regions outside Europe (Primapur®, Jin Sai Heng®, Follitrope®, Folisurge®, and Corneumon®) with respect to glycosylation, macro- and microheterogeneity, and other post-translational modifications and higher order structure. The mean proportion of N-glycosylation-site occupancy was highest in reference r-hFSH-alfa, decreasing sequentially in Primapur, Jin Sai Heng, Corneumon, Follisurge and Follitrope, respectively. The level of antennarity showed slightly higher complexity in Corneumon, Primapur and Follitrope versus reference r-hFSH-alfa, whereas Jin Sai Heng and Folisurge were aligned with reference r-hFSH-alfa across all N-glycosylation sites. Sialylation level was higher in Corneumon and Follitrope, but small differences were detected in other biosimilar preparations compared with reference r-hFSH-alfa. Jin Sai Heng showed higher levels of N-glyconeuramic acid than the other preparations. Minor differences in oxidation levels were seen among the different products. Therefore, in summary, we identified var ious differences in N-glycosylation occupancy, antennarity, sialylation and oxidation between reference r-hFSH-alfa and the biosimilar preparations analyzed.  相似文献   

15.
16.
Tuberculosis (TB) is an infectious disease caused mainly by the bacillus Mycobacterium tuberculosis (Mtb), presenting 9.5 million new cases and 1.5 million deaths in 2014. The aim of this study was to evaluate a nanostructured lipid system (NLS) composed of 10% phase oil (cholesterol), 10% surfactant (soy phosphatidylcholine, sodium oleate), and Eumulgin® HRE 40 ([castor oil polyoxyl-40-hydrogenated] in a proportion of 3:6:8), and an 80% aqueous phase (phosphate buffer pH = 7.4) as a tactic to enhance the in vitro anti-Mtb activity of the copper(II) complexes [CuCl2(INH)2]·H2O (1), [Cu(NCS)2(INH)2]·5H2O (2) and [Cu(NCO)2(INH)2]·4H2O (3). The Cu(II) complex-loaded NLS displayed sizes ranging from 169.5 ± 0.7095 to 211.1 ± 0.8963 nm, polydispersity index (PDI) varying from 0.135 ± 0.0130 to 0.236 ± 0.00100, and zeta potential ranging from −0.00690 ± 0.0896 to −8.43 ± 1.63 mV. Rheological analysis showed that the formulations behave as non-Newtonian fluids of the pseudoplastic and viscoelastic type. Antimycobacterial activities of the free complexes and NLS-loaded complexes against Mtb H37Rv ATCC 27294 were evaluated by the REMA methodology, and the selectivity index (SI) was calculated using the cytotoxicity index (IC50) against Vero (ATCC® CCL-81), J774A.1 (ATCC® TIB-67), and MRC-5 (ATCC® CCL-171) cell lines. The data suggest that the incorporation of the complexes into NLS improved the inhibitory action against Mtb by 52-, 27-, and 4.7-fold and the SI values by 173-, 43-, and 7-fold for the compounds 1, 2 and 3, respectively. The incorporation of the complexes 1, 2 and 3 into the NLS also resulted in a significant decrease of toxicity towards an alternative model (Artemia salina L.). These findings suggest that the NLS may be considered as a platform for incorporation of metallic complexes aimed at the treatment of TB.  相似文献   

17.
This study focuses on a commercial plant elicitor based on chitooligosaccharides (BIG®), which aids in rice plant growth and disease resistance to bacterial leaf blight (BLB). When the pathogen (Xoo) vigorously attacks rice that has suffered yield losses, it can cause damage in up to 20% of the plant. Furthermore, Xoo is a seed-borne pathogen that can survive in rice seeds for an extended period. In this study, when rice seeds were soaked and sprayed with BIG®, there was a significant increase in shoot and root length, as well as plant biomass. Furthermore, BIG®-treated rice plants showed a significant reduction in BLB severity of more than 33%. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) analysis was used to characterize BIG®’s mechanism in the chemical structure of rice leaves. The SR-FTIR results at 1650, 1735, and 1114 cm−1 indicated changes in biochemical components such as pectins, lignins, proteins, and celluloses. These findings demonstrated that commercial BIG® not only increased rice growth but also induced resistance to BLB. The drug’s target enzyme, Xoo 1075 from Xanthomonas oryzae (PDB ID: 5CY8), was analyzed for its interactions with polymer ingredients, specifically chitooligosaccharides, to gain molecular insights down to the atomic level. The results are intriguing, with a strong binding of the chitooligosaccharide polymer with the drug target, revealing 10 hydrogen bonds between the protein and polymer. Overall, the computational analysis supported the experimentally demonstrated strong binding of chitooligosaccharides to the drug target.  相似文献   

18.
Previous works have described the activity of Bifidobacterium longum subsp. infantis CECT 7210 (also commercially named B. infantis IM-1®) against rotavirus in mice and intestinal pathogens in piglets, as well as its diarrhea-reducing effect on healthy term infants. In the present work, we focused on the intestinal immunomodulatory effects of B. infantis IM-1® and for this purpose we used the epithelial cell line isolated from colorectal adenocarcinoma Caco-2 and a co-culture system of human dendritic cells (DCs) from peripheral blood together with Caco-2 cells. Single Caco-2 cultures and Caco-2: DC co-cultures were incubated with B. infantis IM-1® or its supernatant either in the presence or absence of Escherichia coli CECT 515. The B. infantis IM-1® supernatant exerted a protective effect against the cytotoxicity caused by Escherichia coli CECT 515 on single cultures of Caco-2 cells as viability reached the values of untreated cells. B. infantis IM-1® and its supernatant also decreased the secretion of pro-inflammatory cytokines by Caco-2 cells and the co-cultures incubated in the presence of E. coli CECT 515, with the response being more modest in the latter, which suggests that DCs modulate the activity of Caco-2 cells. Overall, the results obtained point to the immunomodulatory activity of this probiotic strain, which might underlie its previously reported beneficial effects.  相似文献   

19.
Tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) are two cytokines involved in the perpetuation of the chronic inflammation state characterizing rheumatoid arthritis (RA). Significant advances in the treatment of this pathology have been made over the past ten years, partially through the development of anti-TNF and anti-IL-1 therapies. However, major side effects still persist and new alternative therapies should be considered. The formulation of the micro-immunotherapy medicine (MIM) 2LARTH® uses ultra-low doses (ULD) of TNF-α, IL-1β, and IL-2, in association with other immune factors, to gently restore the body’s homeostasis. The first part of this review aims at delineating the pivotal roles played by IL-1β and TNF-α in RA physiopathology, leading to the development of anti-TNF and anti-IL-1 therapeutic agents. In a second part, an emphasis will be made on explaining the rationale of using multiple therapeutic targets, including both IL-1β and TNF-α in 2LARTH® medicine. Particular attention will be paid to the ULD of those two main pro-inflammatory factors in order to counteract their overexpression through the lens of their molecular implication in RA pathogenesis.  相似文献   

20.
In a previous study, we found that administration of ILB®, a new low molecular weight dextran sulphate, significantly improved mitochondrial functions and energy metabolism, as well as decreased oxidative/nitrosative stress, of brain tissue of rats exposed to severe traumatic brain injury (sTBI), induced by the closed-head weight-drop model of diffused TBI. Using aliquots of deproteinized brain tissue of the same animals of this former study, we here determined the concentrations of 24 amino acids of control rats, untreated sTBI rats (sacrificed at 2 and 7 days post-injury) and sTBI rats receiving a subcutaneous ILB® administration (at the dose levels of 1, 5 and 15 mg/kg b.w.) 30 min post-impact (sacrificed at 2 and 7 days post-injury). Additionally, in a different set of experiments, new groups of control rats, untreated sTBI rats and ILB®-treated rats (administered 30 min after sTBI at the dose levels of 1 or 5 mg/kg b.w.) were studied for their neurocognitive functions (anxiety, locomotor capacities, short- and long-term memory) at 7 days after the induction of sTBI. Compared to untreated sTBI animals, ILB® significantly decreased whole brain glutamate (normalizing the glutamate/glutamine ratio), glycine, serine and γ-aminobutyric acid. Furthermore, ILB® administration restored arginine metabolism (preventing nitrosative stress), levels of amino acids involved in methylation reactions (methionine, L-cystathionine, S-adenosylhomocysteine), and N-acetylaspartate homeostasis. The macroscopic evidences of the beneficial effects on brain metabolism induced by ILB® were the relevant improvement in neurocognitive functions of the group of animals treated with ILB® 5 mg/kg b.w., compared to the marked cognitive decline measured in untreated sTBI animals. These results demonstrate that ILB® administration 30 min after sTBI prevents glutamate excitotoxicity and normalizes levels of amino acids involved in crucial brain metabolic functions. The ameliorations of amino acid metabolism, mitochondrial functions and energy metabolism in ILB®-treated rats exposed to sTBI produced significant improvement in neurocognitive functions, reinforcing the concept that ILB® is a new effective therapeutic tool for the treatment of sTBI, worth being tested in the clinical setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号