首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Enzymatic synthesis of fatty acid glucose esters from different fatty acyl donors are performed via enzymatic catalysis in the presence of Candida antarctica lipase B (CALB), using acetonitrile as the solvent. The acyl donor nature (fatty acid or fatty acid vinyl ester) and structure are varied. Lower reaction rates and lower conversions are obtained with fatty acids in comparison to their corresponding vinyl esters. Moreover, the acyl donor with the longest chain length gives the highest conversions. The presence of unsaturation on the acyl donor chain is also shown to be detrimental to the conversion. Practical Applications: The practical applications of the present work are related to the production of gluco‐esters that could be used as nonionic surfactants as detergents, cosmetics and food emulsifiers, emollients or conservatives, respectively. In this study, it is shown that in order to get high production yields, each reaction parameter has to be tuned properly.  相似文献   

2.
Medium-chain triglycerides (MCTs) are an emerging choice to treat neurodegenerative disorders such as Alzheimer’s disease. They are triesters of glycerol and three medium-chain fatty acids, such as capric (C8) and caprylic (C10) acids. The availability of C8–C10 methyl esters (C8–C10 ME) from vegetable oil processes has presented an opportunity to use methyl esters as raw materials for the synthesis of MCTs. However, there are few reports on enzymes that can efficiently hydrolyse C8–C10 ME to industrial specifications. Here, we report the discovery and identification of a novel lipase from Lasiodiplodia theobromae fungus (LTL1), which hydrolyses C8–C10 ME efficiently. LTL1 can perform hydrolysis over pH ranges from 3.0 to 9.0 and maintain thermotolerance up to 70 °C. It has high selectivity for monoesters over triesters and displays higher activity over commercially available lipases for C8–C10 ME to achieve 96.17% hydrolysis within 31 h. Structural analysis by protein X-ray crystallography revealed LTL1’s well-conserved lipase core domain, together with a partially resolved N-terminal subdomain and an inserted loop, which may suggest its hydrolytic preference for monoesters. In conclusion, our results suggest that LTL1 provides a tractable route towards to production of C8–C10 fatty acids from methyl esters for the synthesis of MCTs.  相似文献   

3.
Kinetic resolution of some chiral secondary alcohols [2-octanol, 1-phenylethanol, and 1-(2-naphthyl)ethanol] with high enantioselectivity (E>300) was achieved by direct esterification with FFA catalyzed by immobilized Candida antarctica B lipase. The reaction equilibrium was shifted toward the synthetic side by the removal of the water formed under vacuum. Esterification of rac-2-octanol at an alcohol/FFA molar ratio of 2∶1 was used as a model reaction. The chain length of FFA and their structure influenced the reaction rate but did not have a measureable effect on E. The best acyl donor was decanoic acid: >47% conversion at 4 h with virtually perfect E. Temperature did not affect E in the range studied (15–45°C), but temperatures at the higher end afforded improved reaction rates. The reaction rates and E were compared for three different acyl donors. The initial reaction rate increased in the following order: ethyl laurate < lauric acid < vinyl acetate. E was high (E>300) for all acyl donors. Racemic 1-phenylethanol and 1-(2-naphthyl)ethanol were also resolved by direct esterification with decanoic acid in short times (3 and 4 h, respectively) with E>300 and excellent conversions. Preparative-scale kinetic resolution of 2-octanol was also performed.  相似文献   

4.
Fatty acid monoesters of propylene glycol (1,2-propanediol) are good water-in-oil emulsifiers. These esters were synthesized enzymatically to overcome the problems associated with chemical processes. APseudomonas lipase was added to reaction mixtures containing propylene glycol and various acyl donors (fatty acids, fatty acid ethyl esters, fatty acid anhydrides and triglycerides) in organic solvents, and the mixtures were shaken at 30°C. The products were analyzed by gas chromatography. The yield of monoesters was affected by the acyl donors, organic solvents, temperature, water content, pH memory and reaction time. The anhydrous (lyophilized) enzyme and fatty acid anhydrides were best for monoester production. The optimum pH ranges were 4–5 and 8–10. The yields of propylene glycol monolaurate, monomyristate, monopalmitate, monostearate and monooleate with 50 mM fatty acid anhydrides as acyl donors were 97.2, 79.6, 83.7, 89.7 and 93.4 mM, respectively; those with 50 mM fatty acids as acyl donors were 37.3, 28.7, 28.7, 35.3 and 36.2 mM, respectively. The yields of propylene glycol monopalmitate, monostearate and monooleate with 50 mM triglycerides as acyl donors were 87.4, 65.1 and 83.2 mM, respectively.  相似文献   

5.
Certain N-acylethanolamines interact with cannabinoid receptors and have anorexic and neuroprotective effects. Traditional methods for the synthesis of N-acylethanolamines use fatty acid chlorides, fatty acid methyl esters, free fatty acids and triacylglycerols as acyl donors to react with ethanolamine. In the present study, we investigated the feasibility of using fatty acid vinyl esters as the acyl donor to synthesize N-stearoyl and N-palmitoylethanolamine. Theoretically, the use of fatty acid vinyl esters should lead to an irreversible reaction because the volatile acetaldehyde by-product is easily removed. Four reaction conditions, i.e. catalyst concentration, substrate ratio, temperature, and time were evaluated. The reaction performed at mild temperatures and with an excess amount of ethanolamine which acted as both reactant and solvent resulted in the formation of high purity N-stearoyl and N-palmitoylethanolamine. When 20 mmol ethanolamine was reacted with 1 mmol vinyl stearate at 80 °C for 1 h with 1% sodium methoxide as catalyst, N-stearoylethanolamine with 96% purity was obtained after the removal of excess ethanolamine without further purification, while N-palmitoylethanolamine with 98% purity was obtained by reacting with the same substrate ratio at 60 °C for 1.5 h with 3% catalyst. Complete conversion of vinyl stearate and palmitate was achieved.  相似文献   

6.
Lipase-catalyzed synthesis of sugar fatty acid esters was performed in a heterogeneous reaction system in the presence of an organic solvent serving as adjuvant. Although the sugar is almost insoluble in such a system, high conversions to the corresponding sugar esters were achieved, due to crystallization of the product. Acylation occurred regioselectively at the primary hydroxyl group and subsequent diacylation was observed only in the case of caprylic acid (2–5%). Best conditions were found for solvents having low log P values and low product solubility such as acetone, using immobilized lipase from Candida antarctica (CAL-B, Novo SP435) and fatty acids with chain lengths from C12 to C8 as acyl donors. The esterification of β-D(+)-glucose with stearic acid resulted in up to 100% conversion after 48 hours equal to a productivity of 0.4 mmol sugar ester per gram lipase and hour.  相似文献   

7.
A lipase preparation developed from Candida sp. 99‐125 was used for fatty acid alkyl ester synthesis by both enzymatic esterification of fatty acids, and transesterification of oils and fats. The lipase preparation was chosen based on screening of lipases from commercial sources as well as those produced in the laboratory. The effects of enzyme dosage, solvent types, water absorbent additions, inhibition of short‐chain alcohols, alcohol and acid types, molar ratio of substrates, and reusability of the lipase preparation in esterification were studied. Degree of esterification between oleic acid and methanol under optimal conditions reached 92%. Purity of the methyl ester after washing with water and distillation was 98%. Half‐life of the lipase preparation was calculated to be approximately 340 h. For transesterification of rapeseed oil with the same lipase preparation, the amount of methanol and mode of methanol addition to the reaction were also conducted. Transesterification of the oil with stepwise methanol addition reached 83% after 36 h reaction time.  相似文献   

8.
Lipase from Candida rugosa was immobilized on three different supports, i.e. Amberlite XAD7, poly(methylmethacrylate) (PMMA) and celite. With the conditions tested, maximum adsorption can be achieved after 30 min. The activities of the immobilized lipases were determined by the esterification reaction of oleic acid and butanol. The immobilized lipases were found to be very effective in the esterification reaction. The immobilized activities generally were high in apolar organic solvents with log P values from 2·0 to 4·0. The preference for fatty acids as acyl donors differed in all cases of immobilized lipases. Lipase immobilized on XAD7 and PMMA exhibited high preference of acyl donors (fatty acids) with chain lengths 12–18 and 8–18, respectively. Lipase immobilized on celite, however, showed high activity in all cases of fatty acids. The nucleophile (alcohol) selectivity studies showed that lipase immobilized on XAD7 and celite was more accessible to alcohols of chain lengths 3–12. However, lipase immobilized on PMMA showed a significant preference towards alcohols of chain lengths from 3 to 10.  相似文献   

9.
Two immobilized lipases fromCandida antarctica (SP 382) andC. cylindraceae, nowrugosa (2001), catalyzed the synthesis of novel acetylated glucose fatty acid esters with glucose pentaacetate (GP) and Trisun 80 (80% oleic) vegetable oil or methyl oleate as substrates in organic solvents. The relative yield was between 6.4–52%, and the incorporation of oleic acid onto the glucose was between 31–100%. In addition, these enzymes were able to catalyze the synthesis of glucose fatty acid esters with free glucose as the sugar substrate. The highest oleic acid incorporation (100%) was obtained in benzene with SP 382 lipase and Trisun 80 as the acyl donor. With methyl oleate as the acyl donor, greater incorporation was obtained in benzene (90.5%) compared to 75% in isooctane. The 2001 lipase was better in benzene/pyridine (2∶1 vol/vol) 74%) and chloroform (61%) compared to benzene and isooctane. However, with free glucose and Trisun 80 as substrates, both enzymes gave acceptable levels of oleic acid incorporation (82–100%) in benzene, benzene/pyridine and pyridine. The best conditions for the ester interchange reaction reported are: lipase (10% by weight of substrate); incubation time 48 h; molar ratio of Trisun/GP 1∶2; 3 mL solvent and 3% added water. These glucose esters have potential applications as emulsifiers in food, cosmetics and pharmaceutical formulations.  相似文献   

10.
Oxidative stability of lipids is one of the most important parameters affecting their quality. Lipase‐catalyzed lipophilic tyrosyl esters with an equivalent carbon alkyl chain but different degrees of unsaturation (C18:0 to C18:4n3) were prepared, characterized, and used as antioxidants. Free fatty acids and fatty acid ethyl esters (substrate molar ratio tyrosol: acyl donor, 1:10) were used as acyl donors and immobilized lipase from Candida antarctica was the biocatalyst (10 %). The phenolipids were isolated and characterized using ESI–MS, 1H‐NMR, and 13C‐NMR. Peroxide value (PV) and para‐anisidine value (p‐AV) were measured to evaluate their antioxidant activities in bulk oil structured lipid (SL) and in an oil‐in‐water emulsion (SL‐based infant formula). No significant difference was found in yield and reaction time between the two types of acyl donors. However, as the unsaturation of the fatty acids increased the reaction time also increased. In SL, tyrosyl esters exhibited lower antioxidant activity than tyrosol whereas the addition of an alkyl chain enhanced the antioxidant efficiency of tyrosol in infant formula. Tyrosyl oleate was the most efficient antioxidant in the emulsion system followed by tyrosyl stearate and tyrosyl linoleate. These results suggest that the synthesized phenolipids may be used as potential antioxidants in lipid‐based products.  相似文献   

11.
Ascorbic acid is a naturally occurring antioxidant. Nevertheless, its primary applications as an antioxidant in the life science, food and pharmaceutical industries are limited because of its hydrophilic nature. Alternatively, ascorbyl acid esters are potential surfactants and antioxidants. Chemical methods for the synthesis of ascorbyl esters lead to the formation of side products and simultaneous decomposition of ascorbic acid due to harsh reaction conditions. In contrast, lipases are used as regioselective and mild catalysts for the synthesis of ascorbyl esters. So far, various acyl donors namely, fatty acids, fatty acid alkyl esters, fatty acid vinyl esters and triacylglycerols have been explored for the synthesis of ascorbyl fatty esters. Other compounds such as L‐methyl lactate, bixin, phenyl butyric acid are also used as acyl donors. This article is focused on the recent developments of lipase‐catalyzed synthesis of ascorbyl esters, their antioxidant properties and applications.  相似文献   

12.
The diesterification of d-psicose (the C-3 epimer of d-fructose) with fatty acid vinyl esters of selected acyl chain lengths (C8, C10, and C12) was successfully carried out using Candida antarctica lipase (Novozym 435) at 45 °C for 24 h to give the 1,6-diacyl-d-psicofuranoses with a high regioselectivity in good yields (83–90%). These diesters of d-psicose have hydrophilic-lipophilic balance (HLB) values (6.5–8.2) similar to HLB values of monoglyceride compounds which constitute the largest single type of emulsifiers employed by the food industry. Ability of the d-psicose diesters to stabilize oil-in-water emulsions and the weight-averaged oil-droplet diameter in the emulsions was evaluated in this study. Emulsion stability of oil droplets stabilized by d-psicose dicaprylate (0.3%, w/v in oil phase) was comparable to d-fructose dicaprylate (0.2%, w/v). It was further confirmed that the d-psicose diesters exhibited an emulsification activity depending on the chain length of fatty acid; d-psicose dicaprate showed better emulsion stability than the other diesters.  相似文献   

13.
Mining of phospholipase D (PLD) with altered acyl group recognition except its head group specificity is also useful in terms of specific acyl size phospholipid production and as diagnostic reagents for quantifying specific phospholipid species. Microbial PLDs from Actinomycetes, especially Streptomyces, best fit this process requirements. In the present studies, a new PLD from marine Streptomyces klenkii (SkPLD) was purified and biochemically characterized. The optimal reaction temperature and pH of SkPLD were determined to be 60 °C and 8.0, respectively. Kinetic analysis showed that SkPLD had the relatively high catalytic efficiency toward phosphatidylcholines (PCs) with medium acyl chain length, especially 12:0/12:0-PC (67.13 S−1 mM−1), but lower catalytic efficiency toward PCs with long acyl chain (>16 fatty acids). Molecular docking results indicated that the different catalytic efficiency was related to the increased steric hindrance of long acyl-chains in the substrate-binding pockets and differences in hydrogen-bond interactions between the acyl chains and substrate-binding pockets. The enzyme displayed suitable transphosphatidylation activity and the reaction process showed 26.18% yield with L-serine and soybean PC as substrates. Present study not only enriched the PLD enzyme library but also provide guidance for the further mining of PLDs with special phospholipids recognition properties.  相似文献   

14.
Palmitic acid hexadecylthioester and other long-chain acyl thioesters have been prepared in high yield (80–85%, purity >98%) by solvent-free lipase-catalyzed thioesterification of fatty acids with alkanethiols in vacuo. A lipase B preparation from Candida antarctica was more effective than a lipase preparation from Rhizomucor miehei and, particularly, those from papaya latex and porcine pancreas. Lipase-catalyzed transthioesterification of fatty acid methyl esters with alkanethiols was less effective than thioesterification for the preparation of acyl thioesters. However, in transthioesterification, a lipase preparation from R. miehei was more effective than a lipase B preparation from C. antarctica. Lipases from papaya latex and porcine pancreas led to moderate conversions to acyl thioesters in both thioesterification and transthioesterification reactions, whereas only small proportions of thioesters were formed using lipase from Rhizopus arrhizus. Lipases from Chromobacterium viscosum and Candida rugosa were not effective at all.  相似文献   

15.
A new method is proposed for the production of a novel chitin-polyhedral oligomeric silsesquioxanes (POSS) enzyme support. Analysis by such techniques as X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed the effective functionalization of the chitin surface. The resulting hybrid carriers were used in the process of immobilization of the lipase type b from Candida antarctica (CALB). Fourier transform infrared spectroscopy (FTIR) confirmed the effective immobilization of the enzyme. The tests of the catalytic activity showed that the resulting support-biocatalyst systems remain hydrolytically active (retention of the hydrolytic activity up to 87% for the chitin + Methacryl POSS® cage mixture (MPOSS) + CALB after 24 h of the immobilization), as well as represents good thermal and operational stability, and retain over 80% of its activity in a wide range of temperatures (30–60 °C) and pH (6–9). Chitin-POSS-lipase systems were used in the transesterification processes of rapeseed oil at various reaction conditions. Produced systems allowed the total conversion of the oil to fatty acid methyl esters (FAME) and glycerol after 24 h of the process at pH 10 and a temperature 40 °C, while the Methacryl POSS® cage mixture (MPOSS) was used as a chitin-modifying agent.  相似文献   

16.
A mycelial lipase from Rhizopus rhizopodiformis was prepared in fragment form. The lipase was examined to catalyze the alcoholysis of palm oil mid-fraction (PMF) in organic solvents. High percentage conversions of PMF to alkyl esters were achieved when methanol or propanol was used as acyl acceptor. Of the two most prevalent fatty acids in PMF, palmitic acid seemed to be preferred over oleic acid in the formation of methyl and propyl esters. The optimal ratio of oil to methanol in the alcoholysis reaction is 1 to 2 moles. The lipase exhibited high alcoholysis activities in nonpolar solvents (log P>2), such as hexane, benzene, toluene, and heptane. The enzyme showed exceptionally high thermostability.  相似文献   

17.
Biodiesel, a non-toxic and biodegradable fuel, has recently become a major source of renewable alternative fuels. Utilization of lipase as a biocatalyst to produce biodiesel has advantages over common alkaline catalysts such as mild reaction conditions, easy product separation, and use of waste cooking oil as raw material. In this study, Pseudomonas cepacia lipase immobilized onto magnetic nanoparticles (MNP) was used for biodiesel production from waste cooking oil. The optimal dosage of lipase-bound MNP was 40% (w/w of oil) and there was little difference between stepwise addition of methanol at 12 h- and 24 h-intervals. Reaction temperature, substrate molar ratio (methanol/oil), and water content (w/w of oil) were optimized using response surface methodology (RSM). The optimal reaction conditions were 44.2 °C, substrate molar ratio of 5.2, and water content of 12.5%. The predicted and experimental molar conversions of fatty acid methyl esters (FAME) were 80% and 79%, respectively.  相似文献   

18.
Using dialkyl carbonates as reagents for lipase‐catalyzed transesterification, the reaction is driven by the evolvement of carbon dioxide as the co‐product and thus no longer an equilibrium reaction. Therefore this transesterification method is faster and quantitative conversions can be obtained. Short‐chain dialkyl carbonates, like other short‐chain esters, are also suitable solvents for seed oil extraction. Thus, extraction and transesterification can be combined in a single reaction. This reaction, called reactive extraction, was carried out in a standard Soxhlet apparatus with rapeseed, linseed and calendula seed as the raw materials and with dimethyl and diethyl carbonate as extraction solvent and transesterification reagent at the same time. Fatty acid methyl esters and ethyl esters respectively were obtained with higher yields than those achieved by conventional two step extraction / transesterification. In the case of linseed fatty acid esters and especially calendula seed fatty acid esters, the iodine values of the products obtained by one‐pot‐two‐step reactive extraction were significantly higher.  相似文献   

19.
Lipase-catalyzed synthesis of structured low-calorie triacylglycerols   总被引:4,自引:0,他引:4  
Because of their unique fatty acid specificities and regioselectivities, lipases have been found to be effective catalysts for the synthesis of structured lipids that have a predetermined composition and distribution of fatty acyl groups on the glycerol backbone. The prospective plant-derived lipase found in the exudate of Carica papaya is known for its shortchain acyl group specificity, 1,3-glycerol regioselectivity, and sn-3 stereoselectivity. Carica papaya latex (CPL) was therefore examined for its potential ability to synthesize structured lowcalorie short- and long-chain triacylglycerols (SLCT). In this paper, we describe the utility of CPL in the lipase-catalyzed interesterification reaction of triacetin and hydrogenated soybean oil. Normal-phase high-performance liquid chromatography, combined with mass spectrometry, was used to distinguish the structured SLCT synthesized using the lipase from the corresponding SLCT produced by chemical synthesis.  相似文献   

20.
This paper describes the regioselective production of palm-based sorbitol monoesters via esterification catalyzed by Lipozyme® TL IM (Thermomyces lanuginosus lipase adsorbed onto silica gel, Novozymes, Inc., Franklington, NC, USA). Effects of various reaction parameters including types of solvent, substrate molar ratio, molecular sieve and lipase concentration, temperature, reaction time, and fatty acid chain length were investigated. Approximately 76% conversion of sorbitol to sorbitol esters was achieved within 24 h under optimal conditions: sorbitol (0.4 M), fatty acid (0.8 M), 20 wt% Lipozyme® TL IM in 100 mL tert-butanol at 55 °C for 24 h in the presence of 25 wt% 3 Å molecular sieve as water absorbent. The reactions were conducted in an orbital incubator shaker at a shaking rate of 200 rpm. Lipozyme® TL IM was highly regioselective, esterifying exclusively at sorbitol's primary hydroxyl groups, producing 1-O- and 6-O-sorbitol monoesters. The biocatalyst also exhibited substrate selectivity toward shorter chain acyl donors, with caprylic acid exhibiting the highest conversion of sorbitol. In addition, Lipozyme® TL IM was reused up to four successive reaction cycles without significant loss of activity. The biocatalytic process reported in this paper is a one-step process to produce biobased surfactants that does not involve the use of toxic or expensive solvents that are commonly employed for derivatization of sugars, or pre-derivatization of the substrates molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号