首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 455 毫秒
1.
Coumarin was previously found to cause tissue-selective toxicity in the olfactory mucosa (OM) of rats and mice, with rats being the more sensitive species. The aim of this study was to explore the role of target tissue biotransformation in OM-selective toxicity and the metabolic basis of the species differences in coumarin toxicity. At least six coumarin metabolites were detected in OM microsomal reactions, with o-hydroxyphenylacetaldehyde (o-HPA) being the most abundant. Formation of o-HPA was inhibited by reduced glutathione, confirming its origin from a reactive intermediate. There were significant differences in the rates and metabolite profiles of coumarin metabolism in the livers of Wistar rats and C57BL/6 mice. The rates of metabolic activation of coumarin, as indicated by the formation of o-HPA, were comparable in OM microsomes of the two species but about 25- and 3-fold higher in OM than in liver microsomes of rats and mice, respectively. Thus, target tissue activation seems to play an important role in the tissue-selective toxicity, whereas differences in the rates of hepatic metabolism may be responsible for the species difference in olfactory toxicity. Purified, heterologously expressed mouse CYP2A5 and CYP2G1 produced 7-hydroxycoumarin and o-HPA as the predominant products, respectively. Kinetic analysis and immunoinhibition studies indicated that the OM-specific CYP2G1 plays the major role in metabolic activation of coumarin. Furthermore, of 13 human cytochrome P-450s (P-450s) examined, five (CYP1A1, CYP1A2, CYP2B6, CYP2E1, and CYP3A4) were active in the metabolic activation of coumarin, suggesting a potential risk of coumarin toxicity in humans.  相似文献   

2.
1. A simple, rapid method was developed for studying xenobiotic metabolism by cytochrome P450 in liver microsome preparations. Capillary electrophoresis was used to separate the metabolite from the metabolic mixture. 2. Coumarin is metabolized to 7-hydroxycoumarin by a cytochrome P450 isoenzyme. Human, bovine, gerbil, mouse (Schofield, CO1), rat, rabbit, porcine, and cynomologus monkey microsomal preparations were investigated for coumarin metabolism by determining the content of 7-hydroxycoumarin present after metabolism. 3. Separation of 7-hydroxycoumarin from the reaction mixture was carried out in 50 mM phosphate buffer, pH 6.8, on a fused silica capillary at 25 degrees C and 15 kV. The metabolic matrix consisted of an NADPH regeneration system, 205.5 mu M coumarin, and the microsomal preparation. Standard curves were prepared in the microsomal preparation and the limit of quantification was 6.17 mu M, with a linear range from 0 to 308.5 mu M. 4. The reaction was initiated by the addition of the microsomes. An aliquot of the reaction mixture was removed at specific timed intervals over 2 h and injected directly onto a capillary electrophoresis column and the concentration of 7-hydroxycoumarin determined. The metabolism of coumarin to 7-hydroxycoumarin is greatest in human and monkey microsomes.  相似文献   

3.
Female SD rats with established 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary tumours were treated with coumarin (20 mg/kg body weight; six times per week) or its metabolite 7-hydroxycoumarin (20 mg/kg) for 4 weeks. The anti-oestrogen tamoxifen (8.8 mg/kg) served as the reference drug. The inhibitory effect of coumarin was similar to that of tamoxifen [mean change of tumour area: 428% (coumarin) compared to 528% (tamoxifen); control 822%]. The strongest inhibition was observed with 7-hydroxycoumarin (248%); the difference compared to the control was significant (P < 0.01). Neither coumarin nor 7-hydroxycoumarin reduced the number of tumours appearing during treatment as tamoxifen did. However, the size of the tumours treated with coumarin or its metabolite was generally much smaller than those in the tamoxifen group or in the control group. From the data obtained it appears that coumarin and 7-hydroxycoumarin inhibit the growth of tumours that have reached a certain size but do not prevent the formation of tumours after exposure to the carcinogen.  相似文献   

4.
Chemically reactive epoxide metabolites have been implicated in various forms of drug and chemical toxicity. Naphthalene, which is metabolized to a 1,2-epoxide, has been used as a model compound in this study in order to investigate the effects of perturbation of detoxication mechanisms on the in vitro toxicity of epoxides in the presence of human liver microsomes. Naphthalene (100 microM) was metabolized to cytotoxic, protein-reactive and stable, but not genotoxic, metabolites by human liver microsomes. The metabolism-dependent cytotoxicity and covalent binding to protein of naphthalene were significantly higher in the presence of phenobarbitone-induced mouse liver microsomes than with human liver microsomes. The ratio of trans-1,2-dihydrodiol to 1-naphthol was 8.6 and 0.4 with the human and the induced mouse microsomes, respectively. The metabolism-dependent toxicity of naphthalene toward human peripheral mononuclear leucocytes was not affected by the glutathione transferase mu status of the co-incubated cells. Trichloropropene oxide (TCPO; 30 microM), an epoxide hydrolase inhibitor, increased the human liver microsomal-dependent cytotoxicity (19.6 +/- 0.9% vs 28.7 +/- 1.0%; P = 0.02) and covalent binding to protein (1.4 +/- 0.3% vs 2.8 +/- 0.2%; P = 0.03) of naphthalene (100 microM), and reversed the 1,2-dihydrodiol to 1-naphthol ratio from 6.6 (without TCPO) to 2.6, 0.6 and 0.1 at TCPO concentrations of 30, 100 and 500 microM, respectively. Increasing the human liver microsomal protein concentration reduced the cytotoxicity of naphthalene, while increasing its covalent binding to protein and the formation of the 1,2-dihydrodiol metabolite. Co-incubation with glutathione (5 mM) reduced the cytotoxicity and covalent binding to protein of naphthalene by 68 and 64%, respectively. Covalent binding to protein was also inhibited by gestodene, while stable metabolite formation was reduced by gestodene (250 microM) and enoxacin (250 microM). The study demonstrates that human liver cytochrome P450 enzymes metabolize naphthalene to a cytotoxic and protein-reactive, but not genotoxic, metabolite which is probably an epoxide. This is rapidly detoxified by microsomal epoxide hydrolase, the efficiency of which can be readily determined by measurement of the ratio of the stable metabolites, naphthalene 1,2-dihydrodiol and 1-naphthol.  相似文献   

5.
Covalent adducts between serum albumin and low molecular weight organic electrophiles are formed with a high degree of regioselectivity mostly for nucleophilic amino acid residues located in subdomains IIA and IIIA. Previous studies have indicated that diol epoxide metabolites of polycyclic aromatic hydrocarbons (PAH) may target residues in a different subdomain. The regioselectivity of PAH epoxide and diol epoxide binding was examined in this study by reaction of human serum albumin in vitro with the racemic trans,anti-isomers of 7,8-dihydrobenzo[a]pyrene-7,8-diol 9,10-epoxide (1), 2,3-dihydrofluoranthene-2,3-diol 1,10b-epoxide (2), 1,2-dihydrochrysene-1,2-diol 3,4-epoxide (5), 6-methyl-1,2-dihydrochrysene-1,2-diol 3,4-epoxide (6), 5-methyl-1,2-dihydrochrysene-1,2-diol 3,4-epoxide (7), 3,4-dihydrobenzo[c]phenanthrene-3,4-diol 1,2-epoxide (8), 11,12-dihydrobenzo[g]chrysene-11,12-diol 13,14-epoxide (9), and 11,12-dihydrodibenzo[a,l]pyrene-11,12-diol 13,14-epoxide (10) and the racemic epoxides cyclopenta[cd]pyrene 3,4-epoxide (3) and benzo[a]pyrene 4,5-epoxide (4) followed by determination of the linkage site. Adducted albumin was digested enzymatically, and digests were chromatographed by reversed-phase HPLC to purify peptide adducts, which were analyzed by electrospray ionization collision-induced dissociation (CID) tandem mass spectrometry. Product ion spectra revealed that adducts fragmented predominantly by cleavage of the peptide-PAH bond with retention of charge by the peptide as well as by the hydrocarbon. Peptide sequences were determined by MS/MS analysis of the peptide ions formed by in-source CID to cleave the adduct bond. Longer peptide sequences established site selectivity by virtue of their uniqueness, while shorter sequences revealed the reactant amino acid within the site. Epoxide 4 and diol epoxides 1, 2, 5, and 6 reacted predominantly with His146; epoxide 3 and diol epoxides 7-9 reacted predominantly with Lys137. Both residues are situated in subdomain IB. The binding site for 10 could not be determined uniquely, but one of the several possibilities was Lys159, which is also located in subdomain IB. The results, taken together with previous findings, demonstrate that the reaction of polycyclic aromatic hydrocarbon epoxides with human serum albumin is highly selective for a small number of residues in subdomain IB.  相似文献   

6.
Carbamazepine (CBZ) is widely used in the treatment of epilepsy, frequently in combination with other anticonvulsants. Its metabolite, carbamazepine-10,11-epoxide, is pharmacologically active and is increased with concurrent use of valproate and other anticonvulsants. This pharmacokinetic interaction may be particularly important because CBZ, its epoxide, phenytoin, and lamotrigine all act on fast voltage-dependent sodium channels. Over a 2-month period, routine serum requests for CBZ (n=47) (excluding known cases of overdose) were also analyzed for CBZ epoxide, phenytoin, and lamotrigine using a simultaneous high performance liquid chromatographic (HPLC) method. Valproate was measured using fluorescence polarization immunoassay (FPIA). With concurrent phenytoin and lamotrigine administration, there was a relative increase in CBZ epoxide and a significant decrease in the ratio of CBZ to epoxide (from more than 5 to 3). If valproate was also present, the concentration of parent and metabolite increased significantly, causing potential toxicity. Two patients in this latter group had significant clinical toxicity, with parent CBZ concentrations in the reference range; a third patient suffered from poor control of seizures. This study illustrates the importance of awareness of the contribution of active metabolites in therapeutic drug monitoring and raises questions about the role of the routine monitoring of such metabolites.  相似文献   

7.
Human populations are thought to metabolize coumarin almost exclusively by 7-hydroxylation. We have identified an individual who is homozygous for a single amino acid substitution (Leu160His) in the cytochrome P450 CYP2A6 arising from the variant CYP2A6*2 allele. On administration of coumarin (2 mg orally) no detectable 7-hydroxycoumarin was excreted in the 0-8-hr urine, rather, approximately 50% of the dose was eliminated as 2-hydroxyphenylacetic acid, the end-product of coumarin 3-hydroxylation. His immediate family members, who were heterozygous for the CYP2A6*2 allele, excreted little 2-hydroxyphenylacetic acid and mainly 7-hydroxycoumarin, when similarly tested. These findings raise a question regarding human risk evaluations for environmental coumarin exposures, since 7-hydroxylation is regarded as a detoxication pathway, but 3-hydroxylation as the process required to lead to macromolecular covalent binding of coumarin. Persons homozygous for the CYP2A6*2 allele may constitute 1-25% of various populations.  相似文献   

8.
The carcinogenic effects of acrylonitrile in rats are believed to be mediated by its DNA-reactive epoxide metabolite, 2-cyanoethylene oxide (CEO). Previous studies have shown that conjugation with glutathione is the major detoxication pathway for both acrylonitrile and CEO. This study investigated the role of epoxide hydrolase in the hydrolysis of CEO by HPLC analysis of the products from [2,3-14C]CEO. CEO is a relatively stable epoxide with a half-life of 99 min at 37 degrees C in sodium phosphate buffer (0.1 M), pH 7.3. Incubation with hepatic microsomes or cytosols from male F-344 rats or B6C3F1 mice did not enhance the rate of hydrolysis of CEO (0.69 nmol/min). Human hepatic microsomes significantly increased the rate of hydrolysis of CEO, whereas human hepatic cytosols did not. Human hepatic microsomal hydrolysis activity was heat-sensitive and potently inhibited by 1,1,1-trichloropropene oxide (IC50 of 23 microM), indicating that epoxide hydrolase was the catalyst. The hydrolysis of CEO catalyzed by hepatic microsomes from six individuals exhibited normal saturation kinetics with KM ranging from 0.6 to 3.2 mM and Vmax from 8.3 to 18.8 nmol hydrolysis products/min/mg protein. Pretreatment of rodents with phenobarbital or acetone induced hepatic microsomal hydrolysis activity toward CEO, whereas treatment with beta-naphthoflavone, dexamethasone or acrylonitrile itself was without effect. These data show that humans possess an additional detoxication pathway for CEO that is not active in rodents (but is inducible). The presence of an active epoxide hydrolase hydrolysis activity toward CEO in humans should be considered in assessments of cancer risk from acrylonitrile exposure.  相似文献   

9.
BACKGROUND: Lymphedema of the arms can be a serious consequence of local and regional therapy in women with breast cancer. Coumarin has been reported to be effective for the treatment of women with lymphedema; we undertook a study in which we attempted to replicate those findings. METHODS: We studied 140 women with chronic lymphedema of the ipsilateral arm after treatment for breast cancer. The women received 200 mg of oral coumarin or placebo twice daily for six months and then the other treatment for the following six months. The end points of the study consisted of the volume of the arm (calculated from measurements of hand and arm circumference) and the answers on a questionnaire completed by the patient about symptoms potentially related to lymphedema. RESULTS: The volumes of the arms at 6 and 12 months, were virtually identical, regardless of whether coumarin or placebo was given first. After six months, the average volume of the affected arm increased by 21 ml during placebo treatment and 58 ml during coumarin treatment (P=0.80). In addition, answers to patient-completed questionnaires were similar in the two treatment groups. After six months only 15 percent of the women in the coumarin group and 10 percent of those in the placebo group reported that the study medication had helped a moderate or large amount (P=0.19). Coumarin was well tolerated, except that it resulted in serologic evidence of liver toxicity in 6 percent of the women. CONCLUSIONS: Coumarin is not effective therapy for women who have lymphedema of the arm after treatment for breast cancer.  相似文献   

10.
An epoxide hydrolase from Rhodococcus erythropolis DCL14 catalyzes the hydrolysis of limonene-1,2-epoxide to limonene-1,2-diol. The enzyme is induced when R. erythropolis is grown on monoterpenes, reflecting its role in the limonene degradation pathway of this microorganism. Limonene-1,2-epoxide hydrolase was purified to homogeneity. It is a monomeric cytoplasmic enzyme of 17 kDa, and its N-terminal amino acid sequence was determined. No cofactor was required for activity of this colorless enzyme. Maximal enzyme activity was measured at pH 7 and 50 degrees C. None of the tested inhibitors or metal ions inhibited limonene-1,2-epoxide hydrolase activity. Limonene-1,2-epoxide hydrolase has a narrow substrate range. Of the compounds tested, only limonene-1,2-epoxide, 1-methylcyclohexene oxide, cyclohexene oxide, and indene oxide were substrates. This report shows that limonene-1,2-epoxide hydrolase belongs to a new class of epoxide hydrolases based on (i) its low molecular mass, (ii) the absence of any significant homology between the partial amino acid sequence of limonene-1,2-epoxide hydrolase and amino acid sequences of known epoxide hydrolases, (iii) its pH profile, and (iv) the inability of 2-bromo-4'-nitroacetophenone, diethylpyrocarbonate, 4-fluorochalcone oxide, and 1, 10-phenanthroline to inhibit limonene-1,2-epoxide hydrolase activity.  相似文献   

11.
Coumarin is a drug which is extensively used to treat lymphedema. We report two cases of acute hepatitis probably due to coumarin. Two women, 40 year and 45 year-old, were treated with 90 mg/d of coumarin for 5 months. Clinical features included jaundice, pruritus, and diarrhea. A marked increase in serum aminotransferases was observed (ALT: 30 and 100 times the upper limit of normal, respectively). Coumarin withdrawal was rapidly followed by a favorable outcome in both cases. Rechallenge in one case induced a relapse of symptoms and liver test abnormalities. Coumarin can induce acute cytolytic hepatitis.  相似文献   

12.
The character of reactive metabolites formed from carbamazepine (CBZ) was sought in incubations of [14C]CBZ in hepatic microsomes prepared from adult female mice of a strain (SWV/Fnn) susceptible to CBZ-induced teratogenicity. The formation of radio-labeled protein adducts was used as an index of reactive metabolite exposure. A dependence on cytochrome P450 was shown by a requirement for NADPH and inhibition by carbon monoxide, 1-aminobenzotriazole, piperonyl butoxide, and stiripentol. The addition of ascorbic acid, caffeic acid, N-acetylcysteine, and glutathione decreased the rate of binding of the radiolabel from [14C]CBZ to microsomal protein by more than 50%. The addition of glutathione transferases diminished protein adduct formation beyond that seen with glutathione alone. Evidence for the formation of an arene oxide was sought through the use of inhibitors of epoxide hydrolases, including cyclohexene oxide, chalcone oxides (with the addition of cytosol as appropriate), and by the addition of recombinant human soluble and microsomal epoxide hydrolases and recombinant rat microsomal epoxide hydrolase. The microsomal epoxide hydrolases decreased the velocity of 14C-labeled protein adduct formation by approximately 23%, whereas inhibitors had no effect, most likely because of the low native activity of microsomal epoxide hydrolase in mice. Both DT-diaphorase and catechol-O-methyltransferase diminished 14C-labeled protein adduct formation by 54% and 45%, respectively. The data suggest that the major reactive metabolites formed from CBZ by adult female SWV/Fnn liver microsomes are quinones and arene oxides.  相似文献   

13.
17-(Allylamino)-17-demethoxygeldanamycin (17AAG), a compound that is proposed for clinical development, shares the ability of geldanamycin to bind to heat shock protein 90 and GRP94, thereby depleting cells of p185erbB2, mutant p53, and Raf-1. Urine and plasma from mice treated i.v. with 17AAG contained six materials with absorption spectra similar to that of 17AAG. Therefore, in vitro metabolism of 17AAG by mouse and human hepatic preparations was studied to characterize: (a) the enzymes responsible for 17AAG metabolism; and (b) the structures of the metabolites produced. These materials had retention times on high-performance liquid chromatography of approximately 2, 4, 5, 6, 7, and 9 min. When incubated in an aerobic environment with 17AAG, murine hepatic supernatant (9000 x g) produced each of these compounds; the 4-min metabolite was the major product. This metabolism required an electron donor, and NADPH was favored over NADH. Metabolic activity resided predominantly in the microsomal fraction. Metabolism was decreased by approximately 80% in anaerobic conditions and was essentially ablated by CO. Microsomes prepared from human livers produced essentially the same metabolites as produced by murine hepatic microsomes, but the 2-min metabolite was the major product, and the 4-min metabolite was next largest. There was no metabolism of 17AAG by human liver cytosol. Metabolism of 17AAG by human liver microsomes also required an electron donor, with NADPH being preferred over NADH, was inhibited by approximately 80% under anaerobic conditions, and was essentially ablated by CO. Liquid chromatography/mass spectrometry analysis of human and mouse in vitro reaction mixtures indicated the presence of materials with molecular weights of 545, 601, and 619, compatible with 17-(amino)-17-demethoxygeldanamycin (17AG), an epoxide, and a diol, respectively. The metabolite with retention time of 4 min was identified as 17AG by cochromatography and mass spectral concordance with authentic standard. Human microsomal metabolism of 17AAG was inhibited by ketoconazole, implying 3A4 as the responsible cytochrome P450 isoform. Incubation of 17AAG with cloned CYP3A4 produced metabolites 4 and 6. Incubation of 17AAG with cloned CYP3A4 and cloned microsomal epoxide hydrolase produced metabolites 2 and 4, with greatly decreased amounts of metabolite 6. Incubation of 17AAG with human hepatic microsomes and cyclohexene oxide, a known inhibitor of microsomal epoxide hydrolase, did not affect the production of metabolite 4 but decreased the production of metabolite 2 while increasing the production of metabolite 6. These data imply that metabolite 2 is a diol and metabolite 6 is an epoxide. Mass spectral fragmentation patterns and the fact that 17AG is not metabolized argue for the epoxide and diol being formed on the 17-allylamino portion of 17AAG and not on its ansamycin ring. These data have implications with regard to preclinical toxicology and activity testing of 17AAG as well as its proposed clinical development because: (a) production of 17AG requires concomitant production of acrolein from the cleaved allyl moiety; and (b) 17AG, which was not metabolized by microsomes, has been described as being as active as 17AAG in decreasing cellular p185erbB2.  相似文献   

14.
Mammalian soluble and microsomal epoxide hydrolases have been proposed to belong to the family of alpha/beta-hydrolase-fold enzymes. These enzymes hydrolyse their substrates by a catalytic triad, with the first step of the enzymatic reaction being the formation of a covalent enzyme-substrate ester. In the present paper, we describe the direct visualization of the ester formation between rat microsomal epoxide hydrolase and its substrate. Microsomal epoxide hydrolase was precipitated with acetone after brief incubation with [1-(14)C]epoxystearic acid. After denaturing SDS gel electrophoresis the protein-bound radioactivity was detected by fluorography. Pure epoxide hydrolase and crude microsomes showed a single radioactive signal of the expected molecular mass that could be suppressed by inclusion of the competitive inhibitor 1,1,1-trichloropropene oxide in the incubation mixture. In a similar manner, 4-fluorochalcone-oxide-sensitive binding of epoxystearic acid to rat soluble epoxide hydrolase could be demonstrated in rat liver cytosol. Under similar conditions, no covalent binding of [26-(14)C]cholesterol-5alpha,6alpha-epoxide to microsomal proteins or solubilized fractions tenfold enriched in cholesterol epoxide hydrolase activity could be observed. Our data provide definitive proof for the formation of an enzyme-substrate-ester intermediate formed in the course of epoxide hydrolysis by microsomal epoxide hydrolase, show no formation of a covalent intermediate between cholesterol epoxide hydrolase and its substrate under the same conditions as those under which an intermediate was shown for both microsomal and soluble epoxide hydrolases and therefore indicate that the cholesterol epoxide hydrolase apparently does not act by a similar mechanism and is probably not structurally related to microsomal and soluble epoxide hydrolases.  相似文献   

15.
Human, rat, and dog phase I and phase II xenobiotic metabolism in precision-cut liver slices and freshly isolated hepatocytes was compared using a range of substrates. Carbamazepine (50 microM) and styrene (2 mM) were used as probes to study the maintenance of cytochrome P450 and epoxide hydrolase-mediated metabolism in male Sprague-Dawley rat, precision-cut liver slices and hepatocytes. Carbamazepine metabolism in both models resulted in the formation of the bioactive 10,11-epoxide (KM = 766 microM and Vmax = 2.5 pmol/min/mg protein in precision-cut slices). Epoxide formation was higher (2.4-fold) in hepatocytes than slices. Styrene was deactivated to styrene diol at a higher rate in hepatocytes (9.7-fold) than slices. The lower rate of metabolism in slices compared with hepatocytes confirms our previous observations using testosterone, 7-ethoxycoumarin, 1-chloro-2,4-dinitrobenzene and 2-(5'-chloro-2'-phosphoryloxyphenyl)-6-chloro-4-(3H)-quinazolinone in the rat. Testosterone 6 beta-hydroxylation in human liver slices was similar to cultured hepatocytes, but lower than in freshly isolated hepatocytes. 7-Ethoxycoumarin O-deethylation was higher in freshly isolated human hepatocytes, as was the ratio of glucuronide to 7-hydroxycoumarin. Testosterone hydroxylations, 7-ethoxycoumarin O-deethylation, and 1-chloro-2,4-dinitrobenzene conjugation were also lower in male beagle dog slices, compared with freshly isolated hepatocytes. Attempts at long-term preservation of dog liver slices using vitrification and storage for up to 9 days at -196 degrees C resulted in the retention of phase I and phase II metabolism, although conjugation was lower than in freshly prepared slices. Xenobiotic metabolism in short-term incubations is consistently lower in dog and rat precision-cut slices than in freshly isolated hepatocytes; whereas, in humans, this quantitative difference is partly hidden by the large interindividual variation.  相似文献   

16.
The rabbit liver microsomal biotransformation of alpha-methylstyrene (1a), 2-methyl-1-hexene (1b), 2,4,4-trimethyl-1-pentene (1c), and 1,3,3-trimethyl-1-butene (1d) has been investigated with the aim at establishing the enantioface selection of the cytochrome P-450-promoted epoxidation of the double bond and the enantioselectivity of microsomal epoxide hydrolase(mEH)-catalyzed hydrolysis of the resulting epoxides. GLC on a Chiraldex G-TA (ASTEC) column was used to determine the enantiomeric composition of the products. The epoxides 2 first produced in incubations carried out in the presence of an NADPH regenerating system were not detected, being rapidly hydrolyzed by mEH to diols 3. The enantiomeric composition of the latter showed that no enantioface selection occurred in the epoxidation of 1c and 1d, and a very low (8%) ee of the (R)-epoxide was formed from 1b. Incubation of racemic epoxides 2b-d with the microsomal fraction showed that the mEH-catalyzed hydrolysis of 2c and 2d was practically nonenantioselective, while that of 2b exhibited a selectivity E = 4.9 favoring the hydrolysis of the (S)-enantiomer. A comparison of these results with those previously obtained for linear and branched chain alkyl monosubstituted oxiranes shows that the introduction of the second alkyl substituent suppresses the selectivity of the mEH reaction of the latter and reverses that of the former substrates.  相似文献   

17.
以香豆素为主配体,邻菲罗啉、三苯基氧化磷、氨替吡啉、水这些中性配体作为第二配体,合成了不同稀土离子(Eu3+、Tb3+、Sm3、Dy3+)的配合物,通过元素分析、红外、紫外、荧光光谱等分析,表征了这些配合物的组成结构和发光性能.结果表明,在所合成的配合物中,香豆素与铕、邻菲罗啉形成的配合物发光强度最强,对其掺入不同比例的钆,发现可改变该配合物的发光强度.  相似文献   

18.
In rats, erythromycin has been shown to induce microsomal enzymes and to promote its own transformation into a metabolite which forms an inactive complex with reduced cytochrome P-450. To determine whether similar effects also occur in humans, we studied hepatic microsomal enzymes from six untreated patients and six patients treated with erythromycin propionate, 2 g per os daily for 7 days. In the treated patients, NADPH-cytochrome c reductase activity was increased; the total cytochrome P-450 concn was also increased but part of the total cytochrome P-450 was complexed by an erythromycin metabolite. The concn of uncomplexed (active) cytochrome P-450 was not significantly modified and the activity of hexobarbital hydroxylase remained unchanged. We also measured the clearance of antipyrine in six other patients; this clearance was not significantly decreased when measured again on the seventh day of the erythromycin propionate treatment. We conclude that the administration of erythromycin propionate induces microsomal enzymes and results in the formation of an inactive cytochrome P-450-metabolite complex in humans. However, the concn of uncomplexed (active) cytochrome P-450 and tests for in vitro and in vivo drug metabolism were not significantly modified.  相似文献   

19.
The existence of a cytochrome P450-dependent 2,3-epoxide of the potent pneumotoxin 3-methylindole was indirectly confirmed using stable isotope techniques and mass spectrometry. Determination of hydride shift and incorporation of labeled oxygen in 3-methyloxindole and 3-hydroxy-3-methyloxindole, metabolites that may be in part dependent on the presence of the epoxide, were utilized as indicators of the epoxide's existence. One mechanism for the formation of 3-methyloxindole involves cytochrome P450-mediated epoxidation followed by ring opening requiring a hydride shift from C-2 to C-3. Through incubations of goat lung microsomes with [2-2H]-3-methylindole, the retention of 2H in 3-methyloxindole was found to be 81%, indicating a majority of the oxindole was produced by the mechanism described above. 3-Hydroxy-3-methylindolenine is an imine reactive intermediate that could be produced by ring opening of the 2,3-epoxide. The imine may be oxidized to 3-hydroxy-3-methyloxindole by the cytosolic enzyme aldehyde oxidase. Activities of this putative detoxification enzyme were determined in both hepatic and pulmonary tissues from goats, rats, mice, and rabbits, but the activities could not be correlated to the relative susceptibilities of the four species to 3-methylindole toxicity. The 18O incorporation into either 3-methyloxindole or 3-hydroxy-3-methyloxindole from both 18O2 and H218O was determined. The 18O incorporation into 3-methyloxindole from 18O2 was 91%, strongly implicating a mechanism requiring cytochrome P450-mediated oxygenation. Incorporation of 18O into 3-hydroxy-3-methyloxindole indicated that the alcohol oxygen originated from molecular oxygen, also implicating an epoxide precursor. These studies demonstrate the existence of two new reactive intermediates of 3-methylindole and describe the mechanisms of their formation and fate.  相似文献   

20.
The majority of the JH III epoxide hydrolase activity in last stadium day 3 (gate 1) wandering Trichoplusia ni was membrane bound with approximately 9% of the activity found in the cytosol. Both the microsomal and cytosolic JH epoxide hydrolases were stable, retaining 30% of their original activity after incubation at 4 degrees C for 15 days. 18O-labeled water underwent enzyme catalyzed regioselective addition to the least substituted C10 position of JH III. In multiple turnover reactions with JH epoxide hydrolase in 97.9% 18O-labeled water, only 91.3% 18O incorporation was observed. This is consistent with an SN2 reaction likely involving a carboxylate in the active site of JH epoxide hydrolase. The DNA amplification cloning of a fragment of a putative T. ni epoxide hydrolase is reported. The deduced amino acid sequence shares 67% similarity to the rat microsomal epoxide hydrolase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号