首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of adding either skim milk or a commercial dry milk protein concentrate (MPC) to whole milk on the composition, yield, and functional properties of Mexican Oaxaca cheese were investigated. Five batches of Oaxaca cheeses were produced. One batch (the control) was produced from whole milk containing 3.5% fat and 9% nonfat solids (SNF). Two batches were produced from milk standardized with skim milk to 2.7 and 1.8% fat, maintaining the SNF content at 9%. In the other 2 batches, an MPC (40% protein content) was used to standardize the milk to a SNF content of 10 and 11%, maintaining the milk fat content at 3.5%. The use of either skim milk or MPC caused a significant decrease in the fat percentage in cheese. The use of skim milk or MPC showed a nonsignificant tendency to lower total solids and fat recoveries in cheese. Actual, dry matter, and moisture-adjusted cheese yields significantly decreased with skim milk addition, but increased with MPC addition. However, normalized yields adjusted to milk fat and protein reference levels did not show significant differences between treatments. Considering skim milk-added and control cheeses, actual yield increased with cheese milk fat content at a rate of 1.34 kg/kg of fat (R = 0.88). In addition, cheese milk fat and SNF:fat ratio proved to be strong individual predictors of cheese moisture-adjusted yield (r2 ≈ 0.90). Taking into account the results obtained from control and MPC-added cheeses, a 2.0-kg cheese yield increase rate per kg of milk MPC protein was observed (R = 0.89), with TS and SNF being the strongest predictors for moisture adjusted yield (r2 ≈ 0.77). Reduced-fat Oaxaca cheese functionality differed from that of controls. In unmelted reduced-fat cheeses, hardness and springiness increased. In melted reduced-fat cheeses, meltability and free oil increased, but stretchability decreased. These changes were related to differences in cheese composition, mainly fat in dry matter and calcium in SNF.  相似文献   

2.
《Journal of dairy science》2019,102(10):8648-8657
In dairy goats, very little is known about the effect of the 2 most important indirect indicators of udder health [somatic cell count (SCC) and total bacterial count (TBC)] on milk composition and cheese yield, and no information is available regarding the effects of lactose levels, pH, and NaCl content on the recovery of nutrients in the curd, cheese yield traits, and daily cheese yields. Because large differences exist among dairy species, conclusions from the most studied species (i.e., bovine) cannot be drawn for all types of dairy-producing animals. The aims of this study were to quantify, using milk samples from 560 dairy goats, the contemporary effects of a pool of udder health indirect indicators (lactose level, pH, SCC, TBC, and NaCl content) on the recovery of nutrients in the curd (%REC), cheese yield (%CY), and daily cheese yields (dCY). Cheese-making traits were analyzed using a mixed model, with parity, days in milk (DIM), lactose level, pH, SCC, TBC, and NaCl content as fixed effects, and farm, breed, glass tube, and animal as random effects. Results indicated that high levels of milk lactose were associated with reduced total solids recovery in the curd and lower cheese yields, because of the lower milk fat and protein contents in samples rich in lactose. Higher pH correlated with higher recovery of nutrients in the curd and higher cheese yield traits. These results may be explained by the positive correlation between pH and milk fat, protein, and casein in goat milk. High SCC were associated with higher recovery of solids and energy in the curd but lower recovery of protein. The higher cheese yield obtained from milk with high SCC was due to both increased recovery of lactose in the curd and water retention. Bacterial count proved to be the least important factor affecting cheese-making traits, but it decreased daily cheese yields, suggesting that, even if below the legal limits, TBC should be considered in order to monitor flock management and avoid economic losses. The effect of NaCl content on milk composition was linked with lower recovery of all nutrients in the curd during cheese-making. In addition, high milk NaCl content led to reductions in fresh cheese yield and cheese solids. The indirect indicators of the present study significantly affected the cheese-making process. Such information should be considered, to adjust the milk-to-cheese economic value and the milk payment system.  相似文献   

3.
Cheese yield is strongly influenced by the composition of milk, especially fat and protein contents, and by the efficiency of the recovery of each milk component in the curd. The real effect of milk composition on cheesemaking ability of goat milk is still unknown. The aims of this study were to quantify the effects of milk composition; namely, fat, protein, and casein contents, on milk nutrient recovery in the curd, cheese yield, and average daily yield. Individual milk samples were collected from 560 goats of 6 different breeds. Each sample was analyzed in duplicate using the 9-laboratory milk cheesemaking assessment, a laboratory method that mimicked cheesemaking procedures, with milk heating, rennet addition, coagulation, curd cutting, and draining. Data were submitted to statistical analysis; results showed that the increase of milk fat content was associated with a large improvement of cheese yield because of the higher recovery of all milk nutrients in the curd, and thus a higher individual daily cheese yield. The increase of milk protein content affected the recovery of fat, total solids, and energy in the curd. Casein number, calculated as casein-to-protein ratio, did not affect protein recovery but strongly influenced the recovery of fat, showing a curvilinear pattern and the most favorable data for the intermediate values of casein number. In conclusion, increased fat and protein contents in the milk had an effect on cheese yield not only for the greater quantity of nutrients available but also for the improved efficiency of the recovery in the curd of all nutrients. These results are useful to improve knowledge on cheesemaking processes in the caprine dairy industry.  相似文献   

4.
A study was undertaken to investigate the effects of milk composition (i.e., protein level and protein:fat ratio), stir-out time, and pressing duration on curd moisture and yield. Milks of varying protein levels and protein:fat ratios were renneted under normal commercial conditions in a pilot-scale cheese vat. During the syneresis phase of cheese making, curd was removed at differing times, and curd moisture and yield were monitored over a 22-h pressing period. Curd moisture after pressing decreased with longer stir-out time and pressing duration, and an interactive effect was observed of stir-out time and pressing duration on curd moisture and yield. Milk total solids were shown to affect curd moisture after pressing, which has implications for milk standardization; that is, it indicates a need to standardize on a milk solids basis as well as on a protein:fat basis. In this study, a decreased protein:fat ratio was associated with increased total solids in milk and resulted in decreased curd moisture and increased curd yield after pressing. The variation in total solids of the milk explains the apparent contradiction between decreased curd moisture and increased curd yield. This study points to a role for process analytic technology in minimizing variation in cheese characteristics through better control of cheesemilk composition, in-vat process monitoring (coagulation and syneresis), and post-vat moisture reduction (curd pressing). Increased control of curd composition at draining would facilitate increased control of the final cheese grade and quality.  相似文献   

5.
An online visible-near-infrared sensor was used to monitor the course of syneresis during cheesemaking with the purpose of validating syneresis indices obtained using partial least squares, with cross-validation across a range of milk fat levels, gel firmness levels at cutting, curd cutting programs, stirring speeds, milk protein levels, and fat:protein ratio levels. Three series of trials were carried out in an 11-L cheese vat using recombined whole milk. Three factorial experimental designs were used, consisting of 1) 3 curd stirring speeds and 3 cutting programs; 2) 3 milk fat levels and 3 gel firmness levels at cutting; and 3) 2 milk protein levels and 3 fat:protein ratio levels, respectively. Milk was clotted under constant conditions in all experiments and the gel was cut according to the respective experimental design. Prediction models for production of whey and whey fat losses were developed in 2 of the experiments and validated in the other experiment. The best models gave standard error of prediction values of 6.6 g/100 g for yield of whey and 0.05 g/100 g for fat in whey, as compared with 4.4 and 0.013 g/100 g, respectively, for the calibration data sets. Robust models developed for predicting yield of whey and whey fat losses using a validation method have potential application in the cheese industry.  相似文献   

6.
The relationships between milk composition, coagulation properties and cheese-making traits in sheep milk were characterised. Ten traits related to milk coagulation (RCTeq, kCF, CFp), cheese yield (%CYCURD, %CYSOLIDS, %CYWATER), and curd nutrients recovery or whey loss (%RECFAT, %RECPROTEIN, %RECSOLIDS, %RECENERGY) were recorded. To obtain a measure of the efficiency in terms of %CY, the ratio between the observed and the theoretical %CY (Ef-%CYCURD, Ef-%CYSOLIDS) was calculated. Sheep milk showed good qualities for coagulation and cheese production; milk lactose appeared to be the component most linked to gelation, curd firming time and water retained in the curd. In the case of milk protein, an opposite relationship with gelation time was observed. Milk fat and protein positively affected total solids recovery and yield inducing higher %CYCURD. Relationships with CFt parameters were limited; curd firming instant rate seems to be the most informative trait to assess the efficiency of the cheese-making process.  相似文献   

7.
Milk protein concentrate (MPC) contains high concentrations of casein and calcium and low concentrations of lactose. Enrichment of cheese milk with MPC should, therefore, enhance yields and improve quality. The objectives of this study were: 1) to compare pizza cheese made by culture acidification using standardized whole milk (WM) plus skim milk (SM) versus WM plus MPC; and 2) compare cheese made using WM + MPC by culture acidification to that made by direct acidification. The experimental design is as follows: vat 1 = WM + SM + culture (commercial thermophilic lactic acid bacteria), vat 2 = WM + MPC + culture, and vat 3 = WM + MPC + direct acid (2% citric acid). Each cheese milk was standardized to a protein-to-fat ratio of approximately 1.4. The experiment was repeated three times. Yield and composition of cheeses were determined by standard methods, whereas the proteolysis was assessed by urea polyacrylamide gel electrophoresis (PAGE) and water-soluble N contents. Meltability of the cheeses was determined during 1 mo of storage, in addition to pizza making. The addition of MPC improved the yields from 10.34 +/- 0.57% in vat 1 cheese to 14.50 +/- 0.84% and 16.65 +/- 2.23%, respectively, in vats 2 and 3 and cheeses. The percentage of fat and protein recoveries showed insignificant differences between the treatments, but TS recoveries were in the order, vat 2 > vat 3 > vat 1. Most of the compositional parameters were significantly affected by the different treatments. Vat 2 cheese had the highest calcium and lowest lactose contencentrations. Vat 3 cheese had the best meltability. Vat 1 cheese initially had better meltability than vat 2 cheese; however, the difference became insignificant after 28 d of storage at 4 degrees C. Vat 3 cheese had the softest texture and produced large-sized blisters when baked on pizza. The lowest and highest levels of proteolysis were found in vats 2 and 3 cheeses, respectively. The study demonstrates the use of MPC in pizza cheese manufacture with improved yield both by culture acidification as well as direct acidification.  相似文献   

8.
Bulk tank milk was standardised to six levels of fat (3·0, 3·2, 3·4, 3·6, 3·8, 4·0%) and similarly to six levels of protein, thus giving a total of 36 combinations in composition. Milk was analyzed for total solids, fat, protein, casein, lactose and somatic cell count and was used to make laboratory-scale cheese. Cheese samples from each batch were assayed for total solids, fat, protein and salt. Losses of milk components in the whey were also determined. Least squares analysis of data indicated that higher protein level in milk was associated with higher protein and lower fat contents in cheese. This was accompanied by lower total solids (higher moisture) in cheese. Inversely, higher fat level in milk gave higher fat and lower protein and moisture contents in cheese. Higher fat level in milk resulted in lower retention of fat in cheese and more fat losses in the whey. Higher protein level in milk gave higher fat retention in cheese and less fat losses in the whey. Regression analysis showed that cheese fat increased by 4·22%, while cheese protein decreased by 2·61% for every percentage increase in milk fat. Cheese protein increased by 2·35%, while cheese fat decreased by 6·14% per percentage increase in milk protein. Milk with protein to fat ratio close to 0·9 would produce a minimum of 50% fat in the dry matter of cheese.  相似文献   

9.
Cheese yield is an important technological trait in the dairy industry in many countries. The aim of this study was to evaluate the effectiveness of Fourier-transform infrared (FTIR) spectral analysis of fresh unprocessed milk samples for predicting cheese yield and nutrient recovery traits. A total of 1,264 model cheeses were obtained from 1,500-mL milk samples collected from individual Brown Swiss cows. Individual measurements of 7 new cheese yield-related traits were obtained from the laboratory cheese-making procedure, including the fresh cheese yield, total solid cheese yield, and the water retained in curd, all as a percentage of the processed milk, and nutrient recovery (fat, protein, total solids, and energy) in the curd as a percentage of the same nutrient contained in the milk. All individual milk samples were analyzed using a MilkoScan FT6000 over the spectral range from 5,000 to 900 wavenumber × cm−1. Two spectral acquisitions were carried out for each sample and the results were averaged before data analysis. Different chemometric models were fitted and compared with the aim of improving the accuracy of the calibration equations for predicting these traits. The most accurate predictions were obtained for total solid cheese yield and fresh cheese yield, which exhibited coefficients of determination between the predicted and measured values in cross-validation (1-VR) of 0.95 and 0.83, respectively. A less favorable result was obtained for water retained in curd (1-VR = 0.65). Promising results were obtained for recovered protein (1-VR = 0.81), total solids (1-VR = 0.86), and energy (1-VR = 0.76), whereas recovered fat exhibited a low accuracy (1-VR = 0.41). As FTIR spectroscopy is a rapid, cheap, high-throughput technique that is already used to collect standard milk recording data, these FTIR calibrations for cheese yield and nutrient recovery highlight additional potential applications of the technique in the dairy industry, especially for monitoring cheese-making processes and milk payment systems. In addition, the prediction models can be used to provide breeding organizations with information on new phenotypes for cheese yield and milk nutrient recovery, potentially allowing these traits to be enhanced through selection.  相似文献   

10.
Milk samples from 50 Holstein cows were tested monthly for 10 mo for total protein, casein, fat, somatic cells, and pH. A Formagraph was used to measure chymosin coagulation properties. Significant variations in coagulation time and curd firmness were observed in relation to period of lactation, individual cows, and milk pH. A high negative correlation coefficient (?.86) was observed between coagulation time and curd firmness measured 30 min after addition of chymosin. The mean coagulation time generally increased as lactation progressed and milk yield decreased. Curd firmness was generally greatest in midlactation samples.Milk from 38% of the cows did not coagulate in 30 min 1 mo prior to their dry periods. The frequency of failure to coagulate was 68% in winter and 32% in fall. Milk pH was the most significant factor that affected coagulation time and curd firmness. Simulated cheese making procedures were utilized to estimate recovery of fat and protein in curd. Curd yield calculated from the recovery data ranged from 5.4 to 14% with a mean of 9.2%.  相似文献   

11.
《Journal of dairy science》2022,105(3):2132-2152
Bovines produce about 83% of the milk and dairy products consumed by humans worldwide, the rest represented by bubaline, caprine, ovine, camelid, and equine species, which are particularly important in areas of extensive pastoralism. Although milk is increasingly used for cheese production, the cheese-making efficiency of milk from the different species is not well known. This study compares the cheese-making ability of milk sampled from lactating females of the 6 dairy species in terms of milk composition, coagulation properties (using lactodynamography), curd-firming modeling, nutrients recovered in the curd, and cheese yield (through laboratory model-cheese production). Equine (donkey) milk had the lowest fat and protein content and did not coagulate after rennet addition. Buffalo and ewe milk yielded more fresh cheese (25.5 and 22.9%, respectively) than cow, goat, and dromedary milk (15.4, 11.9, and 13.8%, respectively). This was due to the greater fat and protein contents of the former species with respect to the latter, but also to the greater recovery of fat in the curd of bubaline (88.2%) than in the curd of camelid milk (55.0%) and consequent differences in the recoveries of milk total solids and energy in the curd; protein recovery, however, was much more similar across species (from 74.7% in dromedaries to 83.7% in bovine milk). Compared with bovine milk, the milk from the other Artiodactyla species coagulated more rapidly, reached curd firmness more quickly (especially ovine milk), had a more pronounced syneresis (especially caprine milk), had a greater potential asymptotical curd firmness (except dromedary and goat milk), and reached earlier maximum curd firmness (especially caprine and ovine milk). The maximum measured curd firmness was greater for bubaline and ovine milk, intermediate for bovine and caprine milk, and lower for camelid milk. The milk of all ruminant species can be used to make cheese, but, to improve efficiency, cheese-making procedures need to be optimized to take into account the large differences in their coagulation, curd-firming, and syneresis properties.  相似文献   

12.
《Journal of dairy science》1986,69(10):2551-2557
Low moisture Mozzarella cheese curd was made from cheese milks supplemented to 1.2:1 and 1.4:1 fat and protein with 4.5:1 retentates of ultrafiltration stretched and molded in hot 10% brine.Retentate supplementation improved cheese yield and yield efficiencies. Retentate-supplemented cheese had higher protein and fat and lower moisture than controls. Maximum total solids and yields were obtained from cheese stretched in hot brine. Such cheese showed more uniform salt distribution but slightly lower salt concentration than controls. More loss of fat occurred in whey in control cheese stretched in hot water. Hot brine stretching of low moisture Mozzarella cheese made from retentate-supplemented milk suggests savings in time, space, equipment, and labor without detrimental effects on cheese color and meltability.  相似文献   

13.
Two sets of Cheddar cheese were made in which the milk protein level (%, wt/wt) was increased from 3.3 (Control A, CA) to 3.6 (set A) or from 3.3 (control B, CB) to 4.0 (set B) by the addition of phosphocasein (PC), milk protein concentrate (MPC), or freshly prepared ultrafiltered milk retentate (UFR). The cheeses were denoted CA, PCA, MPCA, and UFRA from set A, and CB, PCB, MPCB, and UFRB, from set B, respectively. The level of cheese moisture decreased significantly on increasing milk protein level from 3.3 to 3.6 or 4.0% (wt/wt), but was not affected significantly by the method of protein standardization. The percentage milk fat recovered to cheese increased significantly on increasing the level of milk protein from 3.3 to 3.6% (wt/wt) with PC, and from 3.3 to 4.0% (wt/wt) with PC, MPC, and UFR. Increasing milk protein level from 3.3 to 4.0% (wt/wt) with PC significantly increased the percentage of milk protein recovered to cheese. Actual cheese yield increased significantly with milk protein level. The yield of cheese per 100 kg of milk normalized to reference levels of fat (3.4%, wt/wt) and casein (2.53%, wt/wt) indicated no significant effects of protein content or standardization treatment on yield. However, the moisture-adjusted yield per 100 kg of milk with reference levels of fat and casein increased significantly on increasing the protein content from 3.3 to 3.6% (wt/wt) with MPC and from 3.3 to 4.0% (wt/wt) with PC, MPC, and UFR.  相似文献   

14.
Little is known about the complex process of cheesemaking at the individual level of dairy goats because of the difficulties of producing a high number of model cheeses. The objectives of this work were (1) to study the cheesemaking ability of goat milk; (2) to investigate the variability of cheesemaking-related traits among different farms; (3) to assess the effects of stage of lactation and parity; and (4) to compare 6 breeds of goat (Saanen and Camosciata delle Alpi for the Alpine type; Murciano-Granadina, Maltese, Sarda and Sarda Primitiva for the Mediterranean type) for their cheesemaking ability. For each goat (n = 560) we studied (1) 8 milk quality traits (fat, protein, total solids, casein, lactose, pH, somatic cell score, and bacterial count); (2) 4 milk nutrient recovery traits (fat, protein, total solids, and energy) in curd; (3) 3 actual cheese yield traits (fresh cheese, cheese solids, and cheese water); (4) 2 theoretical cheese yield values (fresh cheese and cheese solids) and the related cheesemaking efficiencies; and (5) daily milk yield and 3 daily cheese yield traits (fresh cheese, cheese solids, and water retained in the curd). With respect to individual animal factors, farm was not particularly important for recovery traits or actual and theoretical cheese yield and estimates of efficiency, whereas it highly influenced daily productions. Parity of goats influenced daily cheese production, whereas DIM slightly affected recovery as well as percent and daily cheese yield traits. Breed was the most important source of variation for almost all cheesemaking traits. Compared with those of Alpine type, the 4 Mediterranean breeds had, on average, lower daily milk and cheese productions, greater actual and theoretical cheese yield, and higher recovery of nutrients in the curd. Among Alpine type, Camosciata delle Alpi was characterized by greater nutrients recovery than Saanen. Within the 4 Mediterranean types, the 3 Italians produced much less milk per day, with much more fat and protein and greater recovery traits than the Murciano-Granadina, resulting in greater actual cheese yield. Within the Italian breeds, milk from Sarda and Sarda Primitiva was characterized by lower daily yields, higher protein and fat content, and greater recoveries of nutrients than Maltese goats. These results confirmed the potential of goat milk for cheese production and could be useful to give new possibilities and direction in breeding programs.  相似文献   

15.
The impact of concentrating whole milk by reverse osmosis prior to Cheddar cheese making was studied. Heat treated, standardized, whole milk was reduced in volume by 0, 5, 10, 15, and 20% prior to Cheddar cheese manufacture. Milk solids at various milk volume reductions were 11.98, 12.88, 13.27, 14.17, and 15.05%, respectively. Permeates contained only traces of organic matter and would not create a significant by-product handling problem for a cheese plant. Solids content of the whey from cheese making increased with increasing milk concentration. Proximate compositions of reverse osmosis cheeses were comparable to control cheeses. Fat losses decreased, and fat retained in the cheese increased with increasing milk solids concentration. Improved fat recovery in the cheese was related to the amount of mechanical homogenization of milk fat during the concentration process. Actual, composition adjusted, and theoretical cheese yields were determined. Increased retention of whey solids and improved fat recovery gave cheese yield increases of 2 to 3% above expected theoretical yields at 20% milk volume reduction. Water removal from whole milk prior to Cheddar cheese manufacture gave increased productivity and cheese yield without requiring different cheese-making equipment or manufacturing procedures.  相似文献   

16.
Cheese yield (CY) is an important technological trait in the dairy industry, and the objective of this study was to estimate the genetic parameters of cheese yield in a dairy cattle population using an individual model-cheese production procedure. A total of 1,167 Brown Swiss cows belonging to 85 herds were sampled once (a maximum of 15 cows were sampled per herd on a single test day, 1 or 2 herds per week). From each cow, 1,500 mL of milk was processed according to the following steps: milk sampling and heating, culture addition, rennet addition, gelation-time recording, curd cutting, whey draining and sampling, wheel formation, pressing, salting in brine, weighing, and cheese sampling. The compositions of individual milk, whey, and curd samples were determined. Three measures of percentage cheese yield (%CY) were calculated: %CYCURD, %CYSOLIDS, and %CYWATER, which represented the ratios between the weight of fresh curd, the total solids of the curd, and the water content of the curd, respectively, and the weight of the milk processed. In addition, 3 measures of daily cheese yield (dCY, kg/d) were defined, considering the daily milk yield. Three measures of nutrient recovery (REC) were computed: RECFAT, RECPROTEIN, and RECSOLIDS, which represented the ratio between the weights of the fat, protein, and total solids in the curd, respectively, and the corresponding nutrient in the milk. Energy recovery, RECENERGY, represented the energy content of the cheese versus that in the milk. For statistical analysis, a Bayesian animal model was implemented via Gibbs sampling. The effects of parity (1 to ≥4), days in milk (6 classes), and laboratory vat (15 vats) were assigned flat priors; those of herd-test-date, animal, and residual were given Gaussian prior distributions. Intra-herd heritability estimates of %CYCURD, %CYSOLIDS, and %CYWATER ranged from 0.224 to 0.267; these were larger than the estimates obtained for milk yield (0.182) and milk fat content (0.122), and similar to that for protein content (0.275). Daily cheese yields showed heritability estimates similar to those of daily milk yield. The trait %CYWATER showed a highly positive genetic correlation with %CYSOLIDS (0.87), whereas their phenotypic correlation was moderate (0.37), and the fat and protein contents of milk showed high genetic correlations with %CY traits. The heritability estimates of RECPROTEIN and RECFAT were larger (0.490 and 0.208, respectively) than those obtained for the protein and fat contents of milk, and the genetic relationships between RECPROTEIN and RECFAT with milk protein and fat content were low or moderate; RECPROTEIN and RECFAT were moderately correlated with the %CY traits and highly correlated with RECSOLIDS and RECENERGY. Both RECSOLIDS and RECENERGY were heritable (0.274 and 0.232), and showed high correlations with each other (0.96) and with the %CY traits (0.83 to 0.97). Together, these findings demonstrate the existence of economically important, genetically determined variability in cheese yield that does not depend solely upon the fat and protein contents of milk, but also relies on the ability of the coagulum to retain the highest possible proportions of the available protein, fat, and water. Exploitation of this interesting genetic variation does not seem to be feasible through direct measurement of the phenotype in cows at the population level. Instead, further research is warranted to examine possible means for indirect prediction, such as through assessing the mid-infrared spectra of milk samples.  相似文献   

17.
The percentage of milk fat recovered as cheese varies between 85 and 93 per cent, depending on the system used, and this must be taken into account when the casein to fat ratio of milk for cheesemaking is selected. Seasonal variation in the composition of milk protein can have a significant influence on the potential cheese yield. Prolonged storage of milk may cause casein losses while heat precipitation can facilitate the incorporation of whey proteins in cheese curd. The economic consequences of seasonal variations in Ireland on the price of milk for cheesemaking are discussed. The economics of standardisation may be marginal, but it is a useful aid in achieving uniform cheese quality.  相似文献   

18.
A study was undertaken to define the seasonal changes in the efficiency of recovery of milk fat and protein in curd during Cheddar cheese manufacture, and to examine the milk compositional factors that may contribute to these effects. Distinct seasonal trends in the efficiency of conversion of milk fat and protein to cheese were noted. Variations in the retention of milk fat in curd could be associated with seasonal changes in the casein to fat ratio of the milk.  相似文献   

19.
Commercial milk protein concentrate (MPC) was used to standardize whole milk for reduced-fat Cheddar cheesemaking. Four replicate cheesemaking trials of three treatments (control, MPC1, and MPC2) were conducted. The control cheese (CC) was made from standardized milk (casein-to-fat ratio, C/F approximately 1.7) obtained by mixing skim milk and whole milk (WM); MPC1 and MPC2 cheeses were made from standardized milk (C/F approximately 1.8) obtained from mixing WM and MPC, except that commercial mesophilic starter was added at the rate of 1% to the CC and MPC1 and 2% to MPC2 vats. The addition of MPC doubled cheese yields and had insignificant effects on fat recoveries (approximately 94% in MPC1 and MPC2 vs. approximately 92% in CC) but increased significantly total solids recoveries (approximately 63% in CC vs. 63% in MPC1 and MPC2). Although minor differences were noted in the gross composition of the cheeses, both MPC1 and MPC2 cheeses had lower lactose contents (0.25 or 0.32%, respectively) than in CC (0.60%) 7 d post manufacture. Cheeses from all three treatments had approximately 10(9) cfu/g initial starter bacteria count. The nonstarter lactic acid bacteria (NSLAB) grew slowly in MPC1 and MPC2 cheeses during ripening compared to CC, and at the end of 6 mo of ripening, numbers of NSLAB in the CC were 1 to 2 log cycles higher than in MPC1 and MPC2 cheeses. Primary proteolysis, as noted by water-soluble N contents, was markedly slower in MPC1 and MPC2 cheeses compared to CC. The concentrations of total free amino acids were in decreasing order CC > MPC2 > MPC1 cheeses, suggesting slower secondary proteolysis in the MPC cheeses than in CC. Sensory analysis showed that MPC cheeses had lower brothy and bitter scores than CC. Increasing the amount of starter bacteria improved maturity in MPC cheese.  相似文献   

20.
Physical properties of ice cream containing milk protein concentrates   总被引:2,自引:0,他引:2  
Two milk protein concentrates (MPC, 56 and 85%) were studied as substitutes for 20 and 50% of the protein content in ice cream mix. The basic mix formula had 12% fat, 11% nonfat milk solids, 15% sweetener, and 0.3% stabilizer/emulsifier blend. Protein levels remained constant, and total solids were compensated for in MPC mixes by the addition of polydextrose. Physical properties investigated included apparent viscosity, fat globule size, melting rate, shape retention, and freezing behavior using differential scanning calorimetry. Milk protein concentrate formulations had higher mix viscosity, larger amount of fat destabilization, narrower ice melting curves, and greater shape retention compared with the control. Milk protein concentrates did not offer significant modifications of ice cream physical properties on a constant protein basis when substituted for up to 50% of the protein supplied by nonfat dry milk. Milk protein concentrates may offer ice cream manufacturers an alternative source of milk solids non-fat, especially in mixes reduced in lactose or fat, where higher milk solids nonfat are needed to compensate other losses of total solids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号