首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proximate composition, chemical and physical properties of dorsal, ventral and lateral line cuts of farm raised giant catfish were determined. Protein, fat and ash content of the different cuts averaged 16.88, 4.45 and 1.24 g/100 g, respectively. Dorsal contains higher protein concentrations (19 g/100 g) than other two parts (p < 0.05). Ventral showed the highest hydroxyproline content (0.83 mg/g). Differences in lipid composition and fatty acid profiles were found among different cuts with highest phospholipids in the dorsal and highest triglyceride in both ventral and lateral line (p < 0.05). All the meat cuts contained high saturated fatty acid, followed by mono- and polyunsaturated fatty acid. High muscle hardness and toughness was found in the dorsal than that in the ventral (p > 0.05). The highest content of myoglobin and total pigment in lateral line resulted in the highest redness index (a*/b*) of this part. Three major nitrogenous compositions classified based on solubility in giant catfish muscle were myofibrillar, sarcoplasmic and alkaline soluble proteins.  相似文献   

2.
Giant squid (Dosidicus gigas) inner and outer tunics were subjected to hydrolysis with pepsin prior to gelatin extraction (G1 gelatin) by a mild-acid procedure. Furthermore, a second gelatin extraction (G2 gelatin) was done using the collagenous residues that remained from the first extraction. Pepsin allows the collagen solubilisation and the extraction yield to increase by yielding extracts high in α-chains. G1 exhibited good gel forming ability but G2 showed poor viscoelastic behaviour and low gel strength, in agreement with the results for the molecular weight distribution, which showed a considerably higher content of low molecular weight components. In spite of these differences, both G1 and G2 showed good filmogenic ability and similar properties were found including the absence of colour, opacity, low water vapour permeability and high puncture deformation. Nevertheless, films made from G1 had a higher puncture force than films made from G2 as a result of the different molecular weight distribution.  相似文献   

3.
Acid soluble collagen (ASC) and pepsin soluble collagen (PSC) from the skin of striped catfish (Pangasianodon hypophthalmus) were isolated and characterised. The yields of ASC and PSC were 5.1% and 7.7%, based on the wet weight of skin, respectively, with the accumulated yield of 12.8%. Both ASC and PSC comprising two different α-chains (α1 and α2) were characterised as type I and contained imino acid of 206 and 211 imino acid residues/1000 residues, respectively. Peptide maps of ASC and PSC hydrolysed by either lysyl endopeptidase or V8 protease were slightly different and totally differed from those of type I calf skin collagen, suggesting some differences in amino acid sequences and collagen structure. Fourier transform infrared (FTIR) spectra of both ASC and PSC were almost similar and pepsin hydrolysis had no marked effect on the triple-helical structure of collagen. Both ASC and PSC had the highest solubility at acidic pH. A loss in solubility was observed at a pH greater than 4 or when NaCl concentration was higher than 2% (w/v). Tmax of ASC and PSC were 39.3 and 39.6 °C, respectively, and shifted to a lower temperature when rehydrated with 0.05 M acetic acid. Zeta potential studies indicated that ASC and PSC exhibited a net zero charge at pH 4.72 and 5.43, respectively. Thus, ASC and PSC were slightly different in terms of composition and structure, leading to somewhat different properties.  相似文献   

4.
The rheological and functional properties of gelatin from the skin of bigeye snapper (Priacanthus hamrur) fish were assessed. The protein content of dried gelatin was 94.6% and moisture content was 4.2%. The amino acid profile of gelatin revealed high proportion of glycine and imino acids. The bloom strength of solidified gelatin was 108 g. The average molecular weight of fish skin gelatin was 282 kDa as determined by gel filtration technique. The emulsion capacity (EC) of gelatin at a concentration of 0.05% (w/v) was 1.91 ml oil/mg protein and with increase in concentration, the EC values decreased. The gelling and melting temperatures of gelatin were 10 and 16.8 °C, respectively as obtained by small deformation measurements. The flow behavior of gelatin solution as a function of concentration and temperature revealed non-Newtonian behavior with pseudoplastic phenomenon. The Casson and Herschel–Bulkley models were suitable to study the flow behavior. The yield stress was maximum at 10 °C with the concentration of 30 mg/ml. Thermal gelation behavior of threadfin bream (Nemipterus japonicus) mince in presence of different concentration of gelatin was assessed. Gelatin at a concentration of 0.5% yielded higher storage modulus (G′) value than control. Frequency sweep of heat set gel with gelatin revealed strong network formation.  相似文献   

5.
Kemel Jellouli 《LWT》2011,44(9):1965-1970
Gelatin was extracted from the skin of grey triggerfish (Balistes capriscus) by the acid extraction process with a yield of 5.67 g/100 g skin sample on the basis of wet weight. The chemical composition and functional properties of gelatin were investigated. The gelatin had high protein (89.94 g/100 g) but low fat (0.28 g/100 g) contents. Differences in the amino acid composition between grey triggerfish skin gelatin (GSG) and halal bovine gelatin (HBG) were observed. GSG contained a lower number of imino acids (hydroxyproline and proline) (176 residues per 1000 residues) than HBG (219 residues per 1000 residues), whereas the content of serine was higher (40 versus 29 residues per 1000 residues, respectively). The gel strength of the GSG (168.3 g) was lower than that of HBG (259 g) (p < 0.05) possibly due to lower hydroxyproline content. Grey triggerfish skin gelatin exhibited a slightly lower emulsifying activity and water-holding capacity but greater emulsifying and foam stability, foam formation ability and fat-binding capacity than the halal bovine gelatin (p < 0.05). SDS-PAGE of GSG showed high band intensity for the major protein components, especially, α- and β-components and a similar molecular weight distribution to that of standard calf skin collagen type I.  相似文献   

6.
Hai Ying Liu  Ding Li  Shi Dong Guo 《LWT》2008,41(3):414-419
Response surface method was used to determine the optimum operating conditions for extracting the gelatin from channel catfish skin. The optimal conditions for maximum gel strength are 68.8 h for the time of treatment with calcium hydroxide solution, 43.2 °C for the extraction temperature, 5.73 h for the extraction time with hot water. The gelatin from channel catfish skin showed a high gel strength, 276±5 g. Compare to porcine skin gelatin, the gelatin from channel catfish skin has different amino acids composition and a lower thermo-stability.  相似文献   

7.
刘丽娜  许时婴 《食品与机械》2007,23(6):31-34,67
目的以斑点叉尾鮰鱼皮为原料,采用酸碱法制备鱼皮明胶;方法选用NaOH溶液和H2SO4溶液进行明胶的提取,通过单因素试验和正交试验,确定斑点叉尾鮰鱼皮明胶最佳制备工艺;结果NaOH质量分数为0.3%,H2SO4质量分数为0.4%,处理时间均为120 min,提取温度45℃,提取时间6 h,此时,所得明胶的凝胶强度和黏度分别为672.2 g和9.46 mPa·s,明胶提取率为65.21%.  相似文献   

8.
Gelatin was extracted from the skin of farmed giant catfish (GC) and tilapia (TP) at a yield of 19.50% and 23.34% (wet wt). It was high in protein (84–88%) but low in fat (0.09–1.24%) and ash content (0.15–0.17%). The GC exhibited lower emulsifying activity (24–35%), but greater foam ability (98–110%), water holding capacity (477–844%) and fat binding capacity (2541–3314%) than commercial beef skin gelatin (BF) (P < 0.05). GC and TP showed comparable functional properties to BF. SDS‐PAGE patterns of TP gelatin showed high band intensity for the α‐ and β‐components, while the lowest band intensity of the major component was found in the BF. From the study, it can be concluded that the farmed freshwater fish skin GC and TP is a prospective source for producing a significant gelatin yield with desirable functionalities. Because of these, fish skin gelatin could be more effectively and widely used in food industries as a good food ingredient.  相似文献   

9.
Gelatin was extracted from alkali-pretreated skin of zebra blenny (Salaria basilisca) using commercial pepsin with a yield of 18 g/100 g of skin sample. The polypeptides pattern, gel strength, viscosity, textural parameters and functional properties of the zebra blenny skin gelatin (ZBSG) were investigated. Amino acid analysis revealed that ZBSG contained almost all essential amino acids, with glycine being the most predominant one. ZBSG was identified as a type I gelatin, containing α1 and α2-chains as the major constituents. Its gel strength and viscosity were 170.2 g and 5.95 cP, respectively. Fourier transformed infrared spectroscopy (FT-IR) spectra showed helical arrangements in its structure. Its solubility and functional properties were concentration-dependent. While foam expansion (FE) and foam stability (FS) increased with the increase of concentration, emulsifying activity index (EAI) and emulsion stability index (ESI) were noted to decrease. ZBSG also showed strong clarification ability particularly for apple juice, without affecting nutritional value.  相似文献   

10.
The characteristics and functional properties of gelatin from skin cuttlefish (Sepia officinalis) were investigated and compared to those of halal bovine gelatin (HBG). The gelatin extraction efficiency was improved by an acid-swelling process in the presence of smooth hound crude acid protease extract (SHCAP). The yields of gelatins from cuttlefish skin after 48 h with acid and with crude acid protease (15 units/g alkaline-treated skin) were 2.21% and 7.84%, respectively. The gelatin from skin cuttlefish had high protein (91.35%) but low fat (0.28%) contents. Compared to HBG, the cuttlefish-skin gelatin (CSG) has different amino acids composition than halal bovine gelatin. CSG contained slightly low hydroxyproline and proline (180‰) than HBG (219‰), whereas the content of serine was higher (49‰ versus 29‰). The gel strength of the gelatin gel from CSG (181 g) was lower than that of HBG (259 g) (p < 0.05) possibly due to lower hydroxyproline content. Cuttlefish-skin gelatin exhibited a similar emulsifying activity but greater emulsifying and foam stability than the halal bovine gelatin (p < 0.05). Foam formation ability, foam stability and water-holding capacity of CSG were slightly lower than those of the HBG, but fat-binding capacity was higher in the cuttlefish gelatin.  相似文献   

11.
H.Y. Liu  J. Han 《LWT》2009,42(2):540-544
Three gelatins were prepared from channel catfish head bones by hot water after the head was pretreated with alkali protease, quickly desalted by 0.4 mol/L HCl and soaked in 9 g/L Ca(OH)2. The extraction conditions of gelatins were 5 °C, pH 4.0, 4 h, 82 °C, pH 2.5, 2 h and 90 °C, pH 3.0, 3 h, respectively. The studies showed there were many differences between these gelatins. The first head bone gelatin contained high content of imino residues and more high molecular weight proportions of β and γ components. Gel strengths of the second and third gelatins were 209 ± 7 g and 117 ± 5 g, lower than that of the first head bone gelatin (282 ± 11 g). Furthermore, the first head bone gelatin achieved the highest gelling and melting points. The first head bone gelatin showed strong ability of clarification when it was used to clarify apple juice. At the same time, the nutritional components of apple juice changed a little except Vitamin C.  相似文献   

12.
ABSTRACT:  To optimize the extraction of gelatin from channel catfish ( Ictalurus punctatus ) skin, a 2-step response surface methodology involving a central composite design was adopted for the extraction process. After screening experiments, concentration of NaOH, alkaline pretreatment time, concentration of acetic acid, and extraction temperature were selected as the independent variables. In the 1st step of the optimization the dependent variables were protein yield (YP), gel strength (GS), and viscosity (V). Seven sets of optimized conditions were selected from the 1st step for the 2nd-step screen. Texture profile analysis and the 3 dependent variables from the 1st step were used as responses in the 2nd-step optimization. After the 2nd-step optimization, the most suitable conditions were 0.20 M NaOH pretreatment for 84 min, followed by a 0.115 M acetic acid extraction at 55 °C. The optimal values obtained from these conditions were YP = 19.2%, GS = 252 g, and V = 3.23 cP. The gelatin obtained also showed relatively good hardness, cohesiveness, springiness, and chewiness. The yield of protein and viscosity can be predicted by a quadratic and a linear model, respectively.  相似文献   

13.
Functional properties of gelatin from dorsal and ventral skin of cuttlefish with and without bleaching by H2O2 at different concentrations (2% and 5% (w/v)) for 24 and 48 h were studied. Gelatin from skin bleached with 5% H2O2 for 48 h showed the highest yield (49.65% and 72.88% for dorsal and ventral skin, respectively). Bleaching not only improved the colour of gelatin gel by increasing the L-value and decreasing a-value but also enhanced the bloom strength, and the emulsifying and foaming properties of the resulting gelatin. Gelatin from bleached skin contained protein with a molecular weight of 97 kDa and had an increased carbonyl content. Fourier transform infrared spectroscopic study showed higher intermolecular interactions and denaturation of gelatin from bleached skin than that of the control. These results indicated that hydrogen peroxide most likely induced the oxidation of gelatin, resulting in the formation of gelatin cross-links, giving improved functional properties.  相似文献   

14.
Gelatin from catfish skin was obtained by thermal extraction. Triacetin was added to the gelatin at 0, 50, 100, and 150% of the gelatin content to improve the hydrophobic properties of the resulting films. Tween 80 (10% of triacetin amount) was also added as an emulsifier. Internal microstructures of the films were examined using a transmission X-ray microscope (TXM). Other film properties, such as thickness, mechanical properties, water vapor permeability, water solubility, light transparency, and thermal properties were also evaluated. Possible relationships between the internal microstructures and the film properties were hypothesized. The triacetin distribution changed from homogeneous to heterogeneous with its increased content in the films. The addition of triacetin resulted in decreased tensile strength (TS) and increased percent elongation (%E), water solubility, UV and visible light barrier properties, and protein denaturation temperature of the films. Water vapor permeability of the films increased in some treatments (100% and 150% triacetin) possibly due to the heterogeneous distribution of the triacetin and also the increased Tween 80 amount in the films.  相似文献   

15.
Gelatin was extracted from the skin of splendid squid (Loligo formosana) at different temperatures (50, 60, 70 and 80 °C) with extraction yield of 8.8%, 21.8%, 28.2%, and 45.3% (dry weight basis) for G50, G60, G70 and G80, respectively. Gelatin from the skin of splendid squid had a high protein content (∼90%) with low moisture (8.63–11.09%), fat (0.22–0.31%) and ash contents (0.17–0.68%). Gelatin extracted at higher temperature (G80) had a relatively higher free amino group content than gelatin extracted at lower temperatures (G50, G60 and G70) (P < 0.05). All gelatins contained α- and β-chains as the predominant components. Amino acid analysis of gelatin revealed the high proline and hydroxyproline contents for G50 and G60. FTIR spectra of obtained gelatins revealed the significant loss of molecular order of the triple-helix. The gel strength of gelatin extracted at lower temperature (G50) was higher than that of gelatins extracted at higher temperatures including G60, G70 and G80, respectively. The net charge of G50, G60, G70 and G80 became zero at pHs of 6.84, 5.94, 5.49, and 4.86, respectively, as determined by zeta potential titration. Gelatin extracted at higher temperature (G80) had the lower L* value but higher a* and b* values, compared with those extracted at lower temperatures (P < 0.05). Emulsion activity index decreased, whilst emulsion stability index, foam expansion and stability increased as the concentration (1–3%) increased (P < 0.05). Those properties were governed by extraction temperatures of gelatin. Thus gelatin can be successfully extracted from splendid squid skin using the appropriate extraction temperature.  相似文献   

16.
Antioxidant and functional properties were evaluated for gelatin hydrolysates obtained from sole and squid skin gelatin by Alcalase, with a degree of hydrolysis of ∼35% and ∼50%, respectively. Both hydrolysates mainly consisted of peptides below 6.5 kDa, together with peptidic material from around 16 to 6.5 kDa. Moreover, the squid hydrolysate showed a peptide band of around 26 kDa. Antioxidant properties of both gelatins were highly increased by hydrolysis, especially ABTS and metal chelating abilities. The squid hydrolysate showed the highest antioxidant capacity by FRAP, ABTS and metal chelating assays in spite of the lower content in hydrophobic amino acids. Both gelatin hydrolysates had a good solubility (over 95%). The emulsifying activity index (EAI) decreased with increasing concentration. Conversely, the foam expansion increased with increasing concentration. However, both foam and emulsion stabilities were not apparently affected by the concentration of hydrolysate. In the case of the sole hydrolysate, which showed a lower degree Pro and Lys hydroxylation, foam stability was very poor, and 50% of foam expansion was lost after 5 min at all concentrations.  相似文献   

17.
Alkali-pretreated cobia (Rachycentron canadum) skin was extracted in a retort (121 °C) for 30 min to obtain a retorted skin gelatin hydrolysate (RSGH). The molecular mass distributions and antioxidant activities of cobia RSGH and enzyme-treated RSGHs (ET-RSGHs) derived from bromelain, papain, pancreatin, and trypsin digestion were then characterized. The molecular mass distribution of the RSGH ranged mainly between 20,000 and 700 Da and those of ET-RSGHs ranged between 6500 and 700 Da. The DPPH (α,α-diphenyl-β-picrylhydrazyl) radical scavenging effects (%) of 10 mg/ml of RSGH and 10 mg/ml of the four ET-RSGHs were 55% and 51–61%, respectively. The lipid peroxidation inhibition (%) of RSGH and ET-RSGHs (10 mg/ml) were 58% and 60–71% on the fifth day in a linoleic acid model system, respectively. The 3Kd-ET-RSGHs, obtained by using a series of centrifugal ultrafiltration filters (molecular weight cut-offs of 10, 5, and 3 kDa done sequentially with decreasing pore size), exhibited dramatically improved antioxidant activity, with most of the molecular mass ranging below 700 Da. Compared to 10 mg/ml of the RSGH, 10 mg/ml of 3Kd-ET-RSGHs exhibited 45–65% more scavenging of DPPH radical and 24–38% more inhibition of lipid peroxidation. The peptides with molecular masses below 700 Da in the ET-RSGHs or 3Kd-ET-RSGHs significantly affect the antioxidant properties. These peptides are composed of a small number of amino acids or free amino acids and have the potential to be added as antioxidants in foods.  相似文献   

18.
A protein concentrate from giant squid (Dosidicus gigas) was produced under acidic conditions and its functional–technological capability evaluated in terms of its gel-forming ability, water holding capacity and colour attributes. Technological functionality of the concentrate was compared with that of squid muscle and a neutral concentrate. Protein–protein aggregates insoluble at high ionic strength (I = 0.5 M), were detected in the acidic concentrate as result of processing with no preclusion of its gel-forming ability during the sol-to-gel thermal transition. Even though washing under acidic condition promoted autolysis of the myosin heavy chain, the acidic concentrate displayed an outstanding ability to gel giving samples with a gel strength of 455 and 1160 g cm at 75% and 90% compression respectively, and an AA folding test grade indicative of high gel strength, elasticity, and cohesiveness. The process proved to be a good alternative for obtaining a functional protein concentrate from giant squid muscle.  相似文献   

19.
Incorporation of fatty acids (stearic and oleic) into edible films based on blue shark (Prionace glauca) skin gelatin was investigated to modify properties such as water vapour barrier and flexibility due to their hydrophobicity and plasticizing effect, respectively. Addition of stearic acid from 0% to 100% of protein concentration in the film-forming solution considerably decreased water vapour permeability of gelatin–fatty acid emulsion films compared to addition of oleic acid at the same fatty acid concentration. Increasing concentrations of both fatty acids decreased tensile strength, but increased elongation at break due to their plasticizing effect. At the same concentration, oleic acid gave a greater plasticizing effect than did stearic acid. On the other hand, transparency of the gelatin–stearic acid emulsion film was lower than that of the gelatin–oleic acid emulsion film. Faster stirring speed of homogenisation improved properties of only the gelatin–stearic acid emulsion film.  相似文献   

20.
Gelatin film from blue shark (Prionace glauca) skin was investigated in order to utilize what is one of the most serious marine wastes in Japan. Film properties from shark skin such as tensile strength (TS), elongation at break (EAB) were evaluated. The TS of gelatin film from shark skin was affected by the protein concentration (1, 2 and 3%) of the film-forming solution (FFS). TS of the film from a 2% protein FFS was the highest. EAB and water vapor permeability (WVP) increased with increasing FFS protein concentration. WVP of shark skin gelatin was evidently low as compared to gelatin films from other fish. An increase in the FFS protein concentration decreased transparency at almost all wavelengths. Furthermore, opacity at 280 nm was characteristically high as compared to films from bony fish skin. The addition of glycerol improved flexibility and enhanced the UV barrier property at 280 nm. However, transparency at the visible range and WVP increased with increasing glycerol content.From the above, it was suggested that shark skin gelatin film technology can be applied to pharmaceutical products or rich-fat food due to its excellent water and UV barrier properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号