首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study is made of composite carbon -borosilicide on carbon materials prepared by gas phase deposition, diffusion impregnation, liquid-phase impregnation, and fusion. It is shown that muldlayer coatings prepared from carbon-borosilicide materials, particularly silicon and titanium carbides, and molybdenum, tungsten, and hafnium borides and silicides have greater heat resistance in the temperature range 1500–2000°C in air. Their protective properties are strongly dependent on composition, coating structure, and preparation methods as well of the grade of the original carbon materials.NNTs Kharkov Physicotechnical Institute. Translated from Poroshkovaya Metallurgiya, Nos. 3/4(384), pp. 47–50, March–April, 1996. Original article submitted October 17, 1994.  相似文献   

2.
The features of consolidation of the particles during the activated sintering of tungsten powders with different values of dispersity (d av = 2–3 and 0.8–1.0 μm) are investigated. Sintering was activated by introducing nickel additives (up to 0.5 wt %), tungsten nanoparticles (up to 30 wt %), and finely dispersed hafnium carbide (5–30 vol %) with subsequent milling in a vibrating mill. The uniaxial compaction of the samples has been performed under pressures from 50 to 1000 MPa, and sintering was performed in vacuum at 1850°C with holding for 1 h. It is shown that the additives of tungsten carbide increase the density of sintered billets and, in combination with dispersed hafnium carbide, tungsten-based composite materials with a grain size up to 2 μm can be obtained.  相似文献   

3.
Layered composite materials based on hard alloys grades VK and TK with graded surface properties are studied. The materials are prepared using standard procedures of thermal diffusion impregnation, deposition from the vapor phase, and ion-plasma deposition. In addition dispersion strengthened hard alloys are prepared by processing in Ti plasma between the stages of preliminary and final sintering. __________ Translated from Poroshkovaya Metallurgiya, Nos. 7–8(450), pp. 30–38, July–August, 2006.  相似文献   

4.
Evaporated, diffusion, and evaporation—diffusion protective and hardening multicomponent ionplasma coatings for turbine and compressor blades and other gas-turbine engine parts are considered. The processes of ion surface treatment (ion etching and ion saturation of a surface in the metallic plasma of a vacuum arc) and commercial equipment for the deposition of coatings and ion surface treatment are analyzed. The specific features of the ion-plasma coatings deposited from the metallic plasma of a vacuum arc are described, and the effect of the ion energy on the phase composition of the coatings and the processes occurring in the surface layer of an article to be treated are discussed. Some properties of ion-plasma coatings designed for various purposes are presented. The ion surface saturation of articles made from structural materials is shown to change the structural and phase states of their surfaces and, correspondingly, the related properties of these materials (i.e., their heat resistance, corrosion resistance, fatigue strength, and so on).  相似文献   

5.
In recent decades, jewelry manufacturers have started using nonprecious alloys to decrease production costs. A large number of customers, however, have an allergic (sensitizing) body reaction to jewelries made of such materials. The application of nonsensitizing coatings can decrease the negative influence of the jewelry material on the human organism. One material biologically inert towards human body tissues is zirconium. In this study, zirconium-based coatings applied by magnetron sputtering are examined. Eleven regimes of applying zirconium oxynitride coatings onto a substrate of AISI 430 grade steel are investigated. Microhardness and corrosion tests of the coatings in Hank’s solution are conducted and color performance is determined in the CIE 1976 L*a*b* and RGB color spaces. The coating width is 0.4–1.2 μm. It is established that the coatings have a microhardness of 2.5–3.0 GPa and are able to imitate colors of jewelries. Using energy dispersive X-ray spectroscopy, it is established that the coatings consist of Zr, N, and O. The authors select sputtering conditions that produced metallic coatings with high optical reflectance in an energy range near the infrared region of the spectrum (<1.7 eV) of golden color with high lightness. It has been experimentally proven that the coatings do not corrode in Hank’s solution. The allergy patch test of jewelry with the zirconium oxynitride coating conducted on a respondent with sensitizing reaction to nonprecious alloy jewelry has demonstrated a good result—no signs of skin allergy were observed. The results allow us to recommend magnetron sputtering as a technique for applying zirconium-based coatings onto jewelry of nonprecious alloys.  相似文献   

6.
We have studied vacuum activated thermochemical treatment of metallic and carbon materials. We have shown that it is possible to use new environmentally friendly and waste-free productive technology to obtain multipurpose (anticorrosive, wear-resistant, resistant to chemically reactive media and metallic melts, hardening, antifriction, etc.) coatings on metallic and carbon materials. We give examples of commercial implementation of the protective coatings.  相似文献   

7.
Ceramic materials provide an innovative opportunity for corrosion-resistant coatings for nuclear waste containers. Their suitability can be derived from the fully oxidized state for selected metal oxides. Ceramic coatings applied to plain carbon steel substrates by several thermal spray techniques have been exposed to 90 °C simulated ground water (at 10 times typical concentration) for nearly 6 years. Thermal spray processes examined in this work included plasma spray, high-velocity oxy fuel (HVOF), and detonation gun. Some thermal spray coatings have demonstrated superior corrosion protection for the plain carbon steel substrate. In particular, the HVOF and detonation gun thermal spray processes produced coatings with low connected porosity, which limited the growth rate of corrosion products. It was also demonstrated that these coatings resisted spallation of the coating even when an intentional flaw (which allowed for corrosion of the carbon steel substrate underneath the ceramic coating) was placed in the coating. An approach for a theoretical basis for prediction of the corrosion protection provided by ceramic coatings is also presented. The theoretical development includes the effect of the morphology and amount of the porosity within the thermal spray coating and provides a prediction of the exposure time needed to produce a crack in the ceramic coating. This article is based on a presentation made in the symposium “Effect of Processing on Materials Properties for Nuclear Waste Disposition,” November 10–11, 2003, at the TMS Fall meeting in Chicago, Illinois, under the joint auspices of the TMS Corrosion and Environmental Effects and Nuclear Materials Committees.  相似文献   

8.
在恒界面池中研究DIBK-TBP协同萃取体系萃取铪、锆的动力学,考察了温度、界面积和搅拌强度等对萃取速率的影响。结果显示,DIBK-TBP体系萃取铪和锆的过程符合一级动力学反应;对铪的萃取为相内反应和扩散共同影响的混合控制类型,表观活化能-43.106kJ/mol;对锆的萃取与搅拌强度、比界面积无关,为相内反应控制类型,表观活化能-16.024kJ/mol。  相似文献   

9.
The properties of ZrO2 - 3 mole% Y2O3 nanocrystalline powder prepared by diffusion impregnation are studied. The original nanocrystalline powder of M-ZrO2 is prepared with hydrothermal treatment of aqueous zirconium hydroxychloride solution by different regimes. It is found that after diffusion impregnation for all of the powders with yttrium oxide two solid solutions are formed (F-ZrO2 and M-ZrO2) in mixture. It is established that the morphological features typical for the original powders are retained. The efficiency of diffusion impregnation is determined by the slightly-agglomerated powder with a high degree of crystallinity.__________Translated from Poroshkovaya Metallurgiya, Nos. 3–4(442), pp. 3–11, March–April, 2005.  相似文献   

10.
Diffusion chromizing and boriding of iron-base powder materials SP30, SP90, and SP90D3 are studied. The growth kinetics for diffusion layers are determined depending on diffusion impregnation conditions, and material composition and porosity. Comparative bending and tensile strength tests as well as wear- and heat-resistance tests for materials after sintering by standard conditions or boriding and chromizing are performed. It is shown that the mechanical properties of materials after different types of processing are approximately the same whereas the wear and heat resistance after diffusion impregnation increase markedly. This makes it possible to conclude that a combination of sintering and boriding (or chromizing) is possible under the following conditions: boriding at 1000°C for 2–3 h; chromizing at 1100°C for 3–4 h.Kiev Polytechnic Institute. Translated from Poroshkovaya Metallurgiya, No. 8(368), pp. 37–43, August, 1993.  相似文献   

11.
The formation of high-temperature oxidation-resistant coatings on niobium by multicomponent activated diffusion saturation in vacuum is investigated. Thermodynamic calculations of potential chemical reactions that result in anticorrosive protective coatings are performed. Comparative tests of high-temperature oxidation resistance of niobium with protective coatings are conducted at 1700°C in open air.  相似文献   

12.
Heterophase RuAl-based alloys with a β-RuAl + (1–20) vol % ɛ-Ru structure and alloyed with chromium, titanium, and hafnium are produced by vacuum arc melting. The effect of the method of preparing charge materials on their behavior during alloy formation is studied. The effect of a structure on the deformability of the alloys at room temperature is estimated. All alloys exhibit ductility and can be deformed by upsetting at a strain higher than 10–12%. The effect of deformation by upsetting at 800°C and subsequent heat treatment on the structure and properties of the alloys is investigated. The high-temperature strengths of RuAl-, TiAl-, Ni3Al-, and NiAl-based alloys are compared by measuring their hot hardnesses at temperatures up to 1100°C. The high-temperature strength characteristics of the RuAl-based alloys are higher than those of the Ni3Al-, TiAl-, and NiAl-based alloys over the entire temperature range under study; at temperatures ≥900°C, the hardness of ruthenium monoaluminide is higher than those of the other alloys by a factor of 2–4.  相似文献   

13.
The use of high-purity carbon and quartz raw materials reduces the need for comprehensive refining steps after the silicon has been produced carbothermically in the electric reduction furnace. The current work aims at comparing the reaction mechanisms and kinetics occurring in the inner part of the reduction furnace when pellets or lumpy charge is used, as well as the effect of the raw material mix. Laboratory-scale carbothermic reduction experiments have been carried out in an induction furnace. High-purity silicon carbide and two different high-purity hydrothermal quartzes were charged as raw materials at different molar ratios. The charge was in the form of lumps (size, 2–5 mm) or as powder (size, 10–20 μm), mixed and agglomerated as pellets (size, 1–3 mm) and reacted at 2273 K (2000 °C). The thermal properties of the quartzes were measured also by heating a small piece of quartz in CO atmosphere. The investigated quartzes have different reactivity in reducing atmosphere. The carbothermal reduction experiments show differences in the reacted charge between pellets and lumps as charge material. Solid–gas reactions take place from the inside of the pellets porosity, whereas reactions in lumps occur topochemically. Silicon in pellets is produced mainly in the rim zone. Larger volumes of silicon have been found when using lumpy charge. More SiO is produced when using pellets than for lumpy SiO2 for the same molar ratio and heating conditions. The two SiC polytypes used in the carbothermal reduction experiments as carbon reductants presented different reactivity.  相似文献   

14.
The paper compares the microstructure and tribotechnical characteristics of composite coatings of 70 wt.% Ni-20 wt.% Cr-5 wt.% Si-5 wt.% B. These coatings are produced by slip casting and unidirectional solidification. The coating composition is substantiated and coating restructuring mechanisms in the forming process are discussed. Natural composite Ni-Ni3B forms the basis of the coating. The fine lamellar eutectic, which occupies ∼50.5% of the coating, consists of Ni3B, a nickel solid solution doped with chrome and silicon, and CrB crystals. The microhardness of the coating and phase constituents are determined. The method of contact eutectic vacuum melting with controlled cooling permits obtaining the nonporous coating without slag inclusions and with homogeneous oriented structure. The mechanism of 3 to 5 times increase in the wear resistance of homogeneous nonporous coatings and their potential application in friction units of machinery are discussed. __________ Translated from Poroshkovaya Metallurgiya, Vol. 46, No. 1–2(453), pp. 40–47, 2007.  相似文献   

15.
The structure and physicomechanical properties of composite materials based on boron nitride within which new phases (mullite and sialon) form during hot compaction are studied. It is established that the microstructure of composites is specified by their texture formation caused by the crystal morphology of boron nitride particles and it is almost independent of composite phase composition. It is shown that the main factor that affects strength is porosity. The dependence of strength on porosity is exponential in character. The strength of boron nitride-mullite and boron nitride-sialon composites is 110–140 MPa and at 20–1200°C it is almost unchanged. __________ Translated from Poroshkovaya Metallurgiya, Nos. 5–6(449), pp. 33–39, May–June, 2006.  相似文献   

16.
以活性炭和碳化硅为烧结助剂,采用真空热压工艺,制备了碳化硼陶瓷材料.研究了真空热压工艺、烧结助剂对碳化硼陶瓷性能及断口的影响,结果表明,以活性炭和碳化硅为烧结助剂的碳化硼陶瓷随热压压力增加,开口孔隙度减小,相对密度和抗弯强度增加.添加活性炭的碳化硼陶瓷在热压压力为35MPa下,开口孔隙度有最小值(1.7%),相对密度(91.7%)和抗弯强度(277.6MPa)达最大值;以碳化硅为烧结助剂的碳化硼陶瓷在热压压力为30MPa下,开口孔隙度有最小值(0.66%),相对密度(91.9%)和抗弯强度(173.6MPa)达最大值.添加活性炭的碳化硼陶瓷随保温时间由30min增加到90min,开口孔隙度逐渐减小而相对密度逐渐增加(90min时分别达到0.19%、99.6%),抗弯强度先增加后减小,在保温时间为60min时抗弯强度达到最大值(351.7MPa).在相同的真空热压工艺下,添加活性炭的碳化硼陶瓷与添加碳化硅的碳化硼陶瓷相比,其开口孔隙度低,抗弯强度高.初步探讨了真空热压工艺以及添加剂促进碳化硼陶瓷烧结的机理.  相似文献   

17.
The survey deals with methods of raising the heat resistance of niobium, tantalum, and alloys, based on them, and the main lines of development are distinguished for protective coatings that increase the working life of refractory-metal specimens. Ternopol Pedagogic Institute. Translated from Poroshkovaya Metallurgiya, Nos. 1–2, pp. 85–93, January–February, 1997.  相似文献   

18.
The thermodynamic simulation of chlorination of hafnium oxide by gaseous chlorine in the presence of carbon at T = 450–1000°C is performed. It is shown that the main reaction products are gaseous hafnium tetrachloride, carbon monoxide, and carbon dioxide; as the temperature increases, the partial pressure of CO increases, while that of CO2 decreases. In the mentioned temperature range, the variations in the enthalpy, entropy, and the Gibbs energy of chlorination reactions are calculated and the composition of the gas phase under the conditions of thermodynamic equilibrium is determined. In the course of studying the kinetics of chlorination of HfO2 in the presence of carbon in the range T = 600–950°C, it is established that its limiting stage depends on the process temperature. Below 700°C, its rate is limited by the chemical reaction on the surface of nonporous solid spherical particles of the body with the formation of the volatile product; above 700°C, it is limited by the mass transfer of gaseous substances.  相似文献   

19.
The paper examines the mass transfer kinetics, structure, phase and chemical compositions, and micromechanical properties of electrospark and laser coatings on titanium alloys (including their combination) deposited using composite materials based on the ZrB2-ZrSi2 and TiN-Cr3C2 systems. The electrospark deposition of both materials is characterized by a relatively high mass-transfer coefficient (∼40–60%) over a wide range of treatment time t ≥ 1 min/cm2. It is determined that after prolonged electrospark deposition (t = 7 min/cm2), ZrB2-ZrSi2 coatings have structurally heterogeneous surface with smoothed Ti-alloy localities caused by the melt crystallization and modified with alloying components. It is shown that ZrB2-based coatings are promising along with conventional wear-resistant coatings based on refractory titanium compounds. __________ Translated from Poroshkovaya Metallurgiya, Vol. 47, No. 1–2 (459), pp. 151–161, 2008.  相似文献   

20.
An alloy of Co-Ni-Mo-Cr is prepared by diffusion impregnation with chromium from point sources of cobalt-nickel-molybdenum alloy powder synthesized by combined reduction. Optimum regimes are determined for preparing alloy powder by combined reduction of cobalt, nickel, and molybdenum oxides (reduction temperature 1325 K, isothermal soaking time 3 h) and diffusion impregnation with chromium (temperature 1373 K, isothermal soaking time 4 h). The adhesive strength of a facing coating with material of a dental prosthesis manufactured using the alloy developed is studied. It is shown that with application of retention layers the adhesive strength increases by a factor of three to five compared with using cast spheres (beads). __________ Translated from Poroshkovaya Metallurgiya, Nos. 5–6(443), pp. 3–7, May–June, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号