首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to calculate the buckling load of a rectangular plate, the analytical approach is used in this study. The plate is assumed to be simply supported on four edges and loaded by uniform stresses along the edges. If the plate is slender, the buckling is elastic. However, if the plate is sturdy, it buckles in the plastic range. Then, the instantaneous moduli in the constitutive equations depend on the external loading. In this study, the elastic and plastic buckling equations are derived for rectangular plates under biaxial loading, and the corresponding interaction curves are presented. The influences of aspect ratios, load ratios and hardening factors on the buckling stresses are investigated for rectangular plates. From the plastic buckling analysis, the optimal combination of loads is given for the buckling strength.  相似文献   

2.
In this study, buckling of rectangular orthotropic plates resting on a Pasternak elastic foundation under biaxial in-plane loading by the power series method (the method of Frobenius) was analyzed. Similar to many studies, two opposite edges of loading are simply supported and two other edges are assumed clamped. In order to extract the characteristic equations of orthotropic rectangular plate under in-plane loading resting on a Pasternak elastic foundation, the classical plate theory, by considering the interaction between plate and foundation, is used. The results showed that in the aspect ratio of less than 2, the existing Pasternak foundation caused the buckling load to increase severely, but by increasing the aspect ratio, the effect of the foundation is negligible. Applying the in-plane load in the y-direction caused the buckling load to decrease, but by increasing the aspect ratios the effect of the load is negligible.  相似文献   

3.
In this article, an analytical method for buckling analysis of thin functionally graded (FG) rectangular plates is presented. It is assumed that the material properties of the plate vary through the thickness of the plate as a power function. Based on the classical plate theory (Kirchhoff theory), the governing equations are obtained for functionally graded rectangular plates using the principle of minimum total potential energy. The resulting equations are decoupled and solved for rectangular plate with different loading conditions. It is assumed that the plate is simply supported along two opposite edges and has arbitrary boundary conditions along the other edges. The critical buckling loads are presented for a rectangular plate with different boundary conditions, various powers of FGM and some aspect ratios.  相似文献   

4.
This paper numerically investigates the dynamic buckling of thin imperfect rectangular plates subjected to intermediate-velocity impact loads. From numerical results obtained, a dynamic buckling and a dynamic yielding critical condition are defined, and the corresponding critical dynamic loads are estimated. Numerical model employed in the present study is validated by experimental data reported earlier. Results from parametric study indicate that initial imperfection and load duration have significant influence on the dynamic buckling of the plates. The smaller the initial imperfection and the load duration, the higher the dynamic buckling critical loads of the plates. Moreover, different hardening ratios of plate material also affect the elastic–plastic dynamic buckling properties of the plates. If the plate buckles plastically, the dynamic buckling load increases as the hardening ratio of plate material increases. Unlike thin plates under high-velocity impact that buckling always occur after load application, plates under intermediate-velocity impact analyzed in the present study all buckle during the loading phase.  相似文献   

5.
Solid unstiffened, sandwich and hat-stiffened rectangular orthotropic fiber reinforced plastic (FRP) plates were tested for buckling by in-plane compression and for stresses and deflections under uniform out-of-plane pressure. The solid unstiffened and hat-stiffened plates were 154 × 77 cm (1 × w) (72 × 36 in), while the sandwich plates were 102 × 77 cm (1 × w) (48 × 36 in). Balsa core was used in the sandwich plates and in the hat-stiffeners. The two short edges of the unstiffened and sandwich plates were clamped, while the two long edges were simply supported. The two long edges of the hat-stiffened plates were free, while the short edges were clamped. The buckling load, as well as stresses and deflections from the tests, were then compared to those from finite element analysis (FEA) and analytic solutions. There was reasonably good agreement between FEA, analytic, and experimental buckling stresses for the unstiffened solid plates. There was reasonable agreement in buckling stresses between FEA and experimental results for the hat-stiffened plate. There was poor agreement between FEA, analytic, and experimental elastic buckling results for the sandwich plates because they failed in local buckling prior to global buckling. Under out-of-plane uniform pressure, FEA and analytic solutions of the stresses and deflections for the unstiffened solid plates agreed well with experimental results. There was poor agreement between FEA and experimental results for stresses and deflections of the hat-stiffened or sandwich plates. Experimental error could be traced, in part,to plate fabrication, the method of applying out-of-plane pressure, edge support, and instrumentation accuracy.  相似文献   

6.
Thin-walled structural components, such as plates and shells, are used in several aerospace, naval, nuclear power plant, pressure vessels, mechanical and civil structures. Due to their high slenderness, the safety assessment of such structural components requires to carefully assess the buckling collapse which can strongly limit their bearing capacity. For very thin plate, buckling collapse can occur under shear, compression or even under tension. In the latter case, fracture or plastic failure can also take place instead of elastic instability. In the present paper, the effects of a central straight crack on the buckling collapse of rectangular elastic thin-plates—characterized by different boundary conditions, crack length and orientation—under compression, tension or shear loading are analysed. Accurate FE numerical parametric analyses have been performed to get the critical load multipliers in such loading cases. Moreover the effect of crack faces contact is examined and discussed. Some useful conclusions related to the sensitivity to cracks of the buckling loads for thin plates, especially in the case of shear stresses, are drawn. Cracked plates under tension are finally considered in order to determine the most probable collapse mechanism among fracture, plastic flow or buckling and some failure-type maps are determined.  相似文献   

7.
This article, based on first-order shear deformation theory, presents the buckling analysis of a rotationally restrained orthotropic rectangular Mindlin plate resting on a Pasternak elastic foundation. Thus, the Mindlin–Reissner plate theory is employed for which the governing equations are solved by the Rayleigh–Ritz method. Uniformly distributed in-plane loads are applied to two simply supported opposite edges of the plate and the other two edges have rotationally restrained conditions without loading. Finally, the effects of plate parameters, such as foundation stiffness coefficients, aspect ratios, and ratio of elastic modulus in the x to y direction on the buckling loads are presented. The results show that the buckling load would increase when the ratio of the elastic modulus in the x to y direction increases and the plate is close to isotropic. The variation of buckling load versus changing ratio of elastic modulus in the x to y direction in the state of without elastic foundation and with clamp support is more than the rest of the state.  相似文献   

8.
In this article, an exact analytical solution for buckling analysis of moderately thick functionally graded (FG) sector plates resting on Winkler elastic foundation is presented. The equilibrium equations are derived according to the first order shear deformation plate theory. Because of the coupling between the bending and stretching equilibrium equations of FG plates, these plates have deflection under in-plane loads lower than the critical buckling load acting on the mid-plane. The conditions under which FG plates remain flat in the pre-buckling configuration are investigated and the stability equations are obtained based on the flat plate assumption in the pre-buckling state. The stability equations are simplified into decoupled equations and solved analytically for plates having simply supported boundary condition on the straight edges. The critical buckling load is obtained and the effects of geometrical parameters and power law index on the stability of functionally graded sector plates are studded. The results for the critical buckling load of moderately thick functionally graded sector plates resting on elastic foundation are reported for the first time.  相似文献   

9.
This paper describes the experimental investigation of the elastic–plastic dynamic buckling properties of rectangular plates under in-plane fluid–solid slamming. Based on the observation of elastic–plastic dynamic response characteristics of the plates, a dynamic buckling criterion and a dynamic yielding criterion are defined. The corresponding critical impulse are determined from the experimental results for each tested plate. The effect of different boundary conditions on the elastic–plastic dynamic buckling properties of plates is also examined. The results indicate that dynamic buckling always takes place elastically for the types of rectangular plates tested under fluid–solid slamming. The dynamic buckling modes of the plates are governed by the plate fundamental transverse free vibration mode. It is also found that boundary conditions strongly affect the dynamic buckling properties of plates subjected to fluid–solid slamming loads. Strengthening plate boundary constraint is a very effective way to enhance the plates’ ability to resist dynamic buckling.  相似文献   

10.
This paper presents closed-form solution for buckling analysis of orthotropic plates using two variable refined plate theory. The theory accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. Governing equations are derived from the principle of minimum total potential energy. The closed-form solutions of rectangular plates with two opposite edges simply supported and the other two edges having arbitrary boundary conditions are obtained by applying the state space approach to the Levy-type solution. Comparison studies are performed to verify the validity of the present results. The effects of boundary condition, loading condition, and variations of modulus ratio, aspect ratio, and thickness ratio on the critical buckling load of orthotropic plates are investigated and discussed in detail.  相似文献   

11.
余弦分布压力下矩形薄板的屈曲   总被引:1,自引:0,他引:1  
针对不同支承条件,两对边受半余弦非线性分布压力下弹性矩形薄板的屈曲问题,进行了分析研究。对于只产生对称变形的矩形薄板,基于辛弹性力学的平面矩形域理论,给出了精确的面内应力分布。运用Galerkin法分析计算了半余弦分布压力下矩形薄板的屈曲载荷。根据各种不同支承矩形薄板弯曲的位移边界条件,借助于符号运算软件Maple,编写了相应的用户计算程序。对九种不同支承组合下的弹性矩形薄板进行了计算,得到了不同长宽比矩形薄板的屈曲载荷系数。通过与已有文献结果的比较表明,该文求解方法是有效和精确的。基于所给出的结果,可望为解决矩形薄板在非线性分布载荷下的屈曲分析提供一种新的研究方法。  相似文献   

12.
利用弹性非保守系统自激振动的拟固有频率变分原理,推导出复合材料矩形板受非保守随从力作用的变分方程,进而导出此问题的有限元基本方程及求解临界力和固有频率的特征方程。用载荷增量法计算了在多种边界条件下不同边长比的复合材料矩形板在面内受随从力作用的临界载荷,分析了不同角铺设方向及两种材料组合板的临界载荷。计算结果表明,边界条件对层合板的动力稳定性有较大影响,复合材料层合板的角铺设方向对临界载荷有较大影响。  相似文献   

13.
In this paper, a mesh‐free approach is employed for buckling analysis of Mindlin plates that are subjected to in‐plane point loads. The radial point interpolation method (RPIM) is used to approximate displacements based on nodes. Variational forms of the system equations are established. Two‐step solution procedures are implemented. The non‐uniform pre‐stress distribution of plate is first obtained using the RPIM based on a two‐dimensional (2D) elastic plane stress problem. This predetermined non‐uniform pre‐stress distribution is then used to compute buckling loads of plate using the RPIM based on Mindlin's plate assumption. The RPIM can easily handle any number and location of nodes in the plate domain for a desired computational accuracy without major difficulties in solving the initial stresses and buckling loads. Numerical examples considered here include circular and rectangular Mindlin plates that are subjected to in‐plane uniform and point loads with different aspect ratios and boundary conditions. The present results are validated against the available analytical and numerical solutions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
根据板的动力平衡方程和压缩波前附加约束方程,基于双特征参数法和应力波理论,求解了三边简支一边固支矩形薄板在面内轴向冲击载荷作用下动力屈曲位移的解析解。揭示了矩形薄板动力屈曲过程中板的厚宽比、屈曲模态、冲击载荷大小和临界屈曲长度之间的关系。计算结果表明,由于横向惯性效应的存在,动力屈曲的临界载荷要比静力屈曲的大得多。  相似文献   

15.
Pultruded fiber–reinforced plastic (FRP) composite structural shapes (beams and columns) are thin-walled open or closed sections consisting of assemblies of flat plates and commonly made of E-glass fiber and either polyester or vinylester resins. Due to high strength-to-stiffness ratio of composites and thin-walled sectional geometry of FRP shapes, buckling is the most likely mode of failure before material failure. In this paper, explicit analyses of local buckling of rectangular orthotropic composite plates with various unloaded edge boundary conditions (i.e., (1) rotationally restrained along both unloaded edges (RR), and (2) one rotationally restrained and the other free along the unloaded edges (RF)) and subjected to uniform in-plane axial action at simply-supported loaded edges are first presented. A variational formulation of the Ritz method is used to establish an eigenvalue problem, and explicit solutions of plate local buckling coefficients in term of the rotational restraint stiffness (k) are obtained. The two cases of rotationally restrained plates (i.e., the RR and RF plates) are further treated as discrete plates of closed and open sections, and by considering the effect of elastic restraints at the joint connections of flanges and webs, the local buckling of different FRP shapes under uniform axial compression is studied. The approximate expressions of the rotational restraint stiffness (k) for various common FRP sections are provided, and their application to sectional local buckling predictions is illustrated. The explicit local buckling formulas of rotationally restrained plates are validated with the exact transcendental solutions. The analytical predictions for local buckling of various FRP profiles based on the present discrete plate analysis and considering the elastic restraints of the flange–web connections are in excellent agreements with available experimental results and finite element eigenvalue analyses. A design guideline for local buckling prediction and related performance improvement is proposed. The present explicit formulation can be applied effectively to determine the local buckling capacities of composite plates with elastic restraints along the unloaded edges and can be further used to predict the local buckling strength of FRP shapes.  相似文献   

16.
Natural frequencies and buckling stresses of plates made of functionally graded materials (FGMs) are analyzed by taking into account the effects of transverse shear and normal deformations and rotatory inertia. The modulus of elasticity of the plates is assumed to vary according to a power-law distribution in terms of the volume fractions of the constituents. By using the method of power series expansion of displacement components, a set of fundamental dynamic equations of a two-dimensional (2-D) higher-order theory for rectangular functionally graded (FG) plates is derived through Hamilton’s principle. Several sets of truncated approximate theories are applied to solve the eigenvalue problems of FG plates with simply supported edges. In order to assure the accuracy of the present theory, convergence properties of the fundamental natural frequency are examined in detail. Critical buckling stresses of FG plates subjected to in-plane stresses are also obtained and a relation between the buckling stress and natural frequency of simply supported FG plates without in-plane stresses is presented. The distributions of modal displacements and modal stresses in the thickness direction are obtained accurately by satisfying the surface boundary conditions of a plate. The modal transverse stresses have been obtained by integrating the three-dimensional equations of motion in the thickness direction starting from the top or bottom surface of a plate. The present numerical results are also verified by satisfying the energy balance of external and internal works are considered to be sufficient with respect to the accuracy of solutions. It is noticed that the present 2-D higher-order approximate theories can predict accurately the natural frequencies and buckling stresses of simply supported FG plates.  相似文献   

17.
詹豪  邵旭东  蒋志刚 《工程力学》2014,31(11):25-30,38
针对钢箱梁和混凝土薄壁箱梁受压翼缘的稳定问题,基于状态-空间向量法,提出了一种用于弹性支承连续矩形薄板弹性屈曲分析的计算方法。与有限条法结果对比,验证了该方法的可靠性。分析了跨间弹性支承刚度和布置以及荷载参数对屈曲的影响,结果表明:跨间弹性支承对连续矩形薄板屈曲影响明显,屈曲系数随着弹性支承刚度的增大呈非线性增长;等间距、等刚度布置弹性支承有利于板的稳定性,弹性支承的刚度或间距差别越大,对板的稳定性越不利;不同荷载工况下,弹性支承刚度-屈曲系数关系曲线的变化规律基本相同,弹性支承刚度较小时,荷载参数对屈曲系数影响显著,单向受压的屈曲系数可达双向等值受压的两倍。  相似文献   

18.
Summary This paper considers the elastic buckling of symmetric cross-ply laminated rectangular plates with two parallel edges simply supported, one edge free and the remaining edge free, simply supported or clamped. The first-order shear deformation plate theory is used in the analysis. An error apparently made by previous researchers for boundary conditions at free edges subjected to in-plane loads is corrected. Closed-form buckling factors are obtained using a generalised Levy-type solution method to solve the differential equations which govern the buckling behaviour of the laminates. Comparisons are made with previously published results, and the differences between buckling factors obtained with the appropriate and inappropriate free edge conditions are examined. The variation of buckling factors with plate aspect ratio, thickness ratio and the number of layers is investigated. Sets of first-known buckling solutions for cross-ply laminates are reported in design charts and tables.  相似文献   

19.
A finite difference solution of a system of first-order partial differential equations, using a central difference scheme, is presented. The equations describe the linear elastic behaviour of a thick rectangular plate resting on an elastic foundation and carrying an arbitrary transverse load. The lateral edges of the plate are unstressed. The main deflections and stresses predicted by the method for a particular case are given, together for purposes of comparison, with results from a finite element analysis.  相似文献   

20.
In this paper a BEM-based meshless solution is presented to buckling and vibration problems of Kirchhoff orthotropic plates with arbitrary shape. The plate is subjected to compressive centrally applied load together with arbitrarily transverse distributed or concentrated loading, while its edges are restrained by the most general linear boundary conditions. The resulting buckling and vibration problems are described by partial differential equations in terms of the deflection. Both problems are solved employing the Analog Equation Method (AEM). According to this method the fourth-order partial differential equation describing the response of the orthotropic plate is converted to an equivalent linear problem for an isotropic plate subjected only to a fictitious load under the same boundary conditions. The AEM is applied to the problem at hand as a boundary-only method by approximating the fictitious load with a radial basis function series. Thus, the method retains all the advantages of the pure BEM using a known simple fundamental solution. Example problems are presented for orthotropic plates, subjected to compressive or vibratory loading, to illustrate the method and demonstrate its efficiency and its accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号