首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The metal iodides reduce partially the host coordination polymer of the type $ ^{ 3}_{\infty } \left[ {\left( {{\text{Me}}_{ 3} {\text{Sn}}} \right)_{ 3} {\text{Fe}}\left( {\text{CN}} \right)_{ 6} } \right] $ , I, to give new host–guest supramolecular coordination polymers (SCP). The physical and chemical characteristics of the new products were studied by elemental analyses, X-ray powder diffraction, IR, UV/Vis, and solid state NMR spectra. The host–guest SCP are [Mx(Me3Sn)3Fe(1–x)IIIFe x II (CN)6]n M = Li+·2H2O, 1; Li+, 2; Na+, 3; K+, 4; Cu+, 5, [Li(Me3Sn)3FeII(CN)6]n, 6 and [(LiDEE)0.9(Me3Sn)3Fe o.1 III Fe o.9 II (CN)6]n, 7. The stoichiometry and nature of the guest depend on the type of the metal iodide and the reaction conditions. The polymeric nature of these SCP is due to the presence of trigonal bipyramidal configured structure which bridges between the single d-transition metal ions. The host–guest SCP containing the Li ions have been tested as electrodes to construct four different lithium-ion batteries.  相似文献   

2.
A complex with the formula [CuL(H2O)2]{[CuL][Fe(CN)6]}2·2H2O, where L=3,10-bis(2-hydroxyethyl)-1,3,5,8,10,12-hexaazacyclotetradecane, has been synthesized and crystallographically characterized. The structure is composed of a one-dimensional zigzag chain of $\left\{ {[{\text{CuL}}][{\text{Fe(CN)}}_{\text{6}} ]} \right\}_2^{2 - } $ units, and [CuL(H2O)2]2+ units. The one-dimensional zigzag chain extents through ${\text{Cu}}{\kern 1pt} - {\kern 1pt} {\text{CN}} - {\kern 1pt} {\text{Fe}}{\kern 1pt} - {\kern 1pt} {\text{CN}} - {\kern 1pt} {\text{Cu}}$ linkages. The adjacent two polymer chains are linked by the ${\text{O}}{\kern 1pt} - {\kern 1pt} {\text{H}}{\kern 1pt} \cdot \cdot \cdot {\kern 1pt} {\text{N}}{\kern 1pt} \equiv {\kern 1pt} {\text{C}}{\kern 1pt} - $ hydrogen bonding between [CuL(H2O)2]2+ and [Fe(CN)6]3?, forming a 3D supramolecular structure with inner hydrophilic channels. Magnetic susceptibility measurements show no exchange interaction between the Cu(II) and Fe(III) ions due to the longer ${\text{Cu}}{\kern 1pt} - {\kern 1pt} {\text{N}}$ (axial) bond length.  相似文献   

3.
The reactions of K3[Cu(CN)4], R3SnCl (R = Me or ph) and 2,3-dimethyl quinoxaline (dmqox) in H2O/acetonitrile media at room temperature afford the 3D-supramolecular coordination polymers (SCP) 3 [ \textCu 2 ( \textCN ) 2 \textdmqox ] ^{ 3}_{\infty } \left[ {{\text{Cu}}_{ 2} \left( {\text{CN}} \right)_{ 2} {\text{dmqox}}} \right] , 1 and 3 [ \textCu 2 ( \textCN ) 4 ·( \textPh 3 \textSn ) 2 ·\textdmqox ] ^{ 3}_{\infty } \left[ {{\text{Cu}}_{ 2} \left( {\text{CN}} \right)_{ 4} \cdot \left( {{\text{Ph}}_{ 3} {\text{Sn}}} \right)_{ 2} \cdot {\text{dmqox}}} \right] , 2. The structure of the tin free 1 consists of parallel zigzag chains connected by dmqox to form 2D-sheets containing hexagonal 18-atom fused Cu6(CN)4(dmqox)2 rings. The interwoven sheets along the a axis are close packed by extensive H-bonds developing 3D-network structure. The structures of 1 and 2 are investigated by elemental analysis IR, NMR and mass spectra. The ESI+ and ESI mass spectra of 2 support its polymeric nature while the ESI+ mass spectrum confirms the expected M. W. suggested by elemental analysis. The 13C-NMR spectrum of 2 supports the fact that the network structure of 2 contains the rhombic [Cu23-CN)2] motif. The structure of 2 was compared with the structure of the reported prototype 3 [ \textCu 2 ( \textCN ) 4 ·( \textPh 3 \textSn ) 2 ·\textqox ] ^{ 3}_{\infty } \left[ {{\text{Cu}}_{ 2} \left( {\text{CN}} \right)_{ 4} \cdot \left( {{\text{Ph}}_{ 3} {\text{Sn}}} \right)_{ 2} \cdot {\text{qox}}} \right] as well as the other related structures.  相似文献   

4.
$\begin{array}{l}{\hbox{R}^1\hbox{R}^2\hbox{CHOH}} \\ {\hbox{RCH}_2\hbox{OH} }\end{array} \dynrightarrow{Oxone}{\hbox{CH}_3\hbox{CN/H}_2\hbox{O}, 70^{\circ}\hbox{C}} \begin{array}{l}{\hbox{R}^1\hbox{R}^2\hbox{CO}} \\ {\hbox{RCOOH}} \end{array} A simple and environmentally friendly procedure for the oxidation of alcohols is presented utilizing Oxone? (2KHSO5 · KHSO4 · K2 SO4) as oxidant and polymer-supported 2-iodobenzamide as catalyst in CH3CN/H2O mixed solvents.  相似文献   

5.
The value of the ratio \(\gamma _{{\text{Cu}}^{{\text{2 + }}} } /\gamma _{{\text{Ag}}^{\text{ + }} }^2 \) ( \(\gamma _{{\text{Cu}}^{{\text{2 + }}} } ,\gamma _{{\text{Ag}}^{\text{ + }} } \) -are the mean activity coefficients of copper and silver ions, respectively) was calculated from the measured emf of the cell $${\text{Cu(Hg)|H}}_{\text{2}} {\text{SO}}_{\text{4}} {\text{ (}}c_{\text{x}} {\text{)}} - {\text{CuSO}}_{\text{4}} {\text{ (}}c_{\text{y}} {\text{)|Hg}}_{\text{2}} {\text{SO}}_{\text{4}} {\text{, Hg}}$$ and the solubility of Ag2SO4 in H2SO4 (c x) and CuSO4 (c y) solutions. The concentration of H2SO4 in the solution was varied from 0.5 to 2.1 mol dm?3 that of CuSO4 from 0.4 mol dm?3 to saturation. The results were presented as a function: $$\frac{{\gamma _{{\text{Cu}}^{{\text{2 + }}} } }}{{\gamma _{{\text{Ag}}^{\text{ + }} }^2 }} = a_0 + a_1 c_{\text{x}} + a_2 c_{\text{y}} + a_3 c_{\text{x}}^{\text{2}} + a_4 c_{\text{x}} c_{\text{y}} + a_5 c_{\text{y}}^2 .$$ This function allows the estimation of the equilibrium silver ion concentration \(c_{{\text{Ag}}^{\text{ + }} }^{{\text{eq}}} \) in solutions containing both H2SO4 and CuSO4 in the presence of metallic copper. The function is also very useful for the estimation of the \(c_{{\text{Ag}}^{\text{ + }} }^{{\text{eq}}} \) near a working copper electrode.  相似文献   

6.
Electrospinning technique was used to prepare $ {\text{PVP}}/\left[ {{\text{Y}}\left( {{\text{NO}}_{ 3} } \right)_{ 3} + {\text{Yb}}\left( {{\text{NO}}_{ 3} } \right)_{ 3} + {\text{Er}}\left( {{\text{NO}}_{ 3} } \right)_{ 3} + {\text{Al}}\left( {{\text{NO}}_{ 3} } \right)_{ 3} } \right] $ composite nanobelts and novel structures of Y3Al5O12:Er3+, Yb3+ (denoted as YAG:Er3+, Yb3+ for short) nanobelts have been successfully fabricated after calcination of the relevant composite nanobelts at 900 °C for 8 h. YAG:Er3+, Yb3+ nanobelts were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and fluorescence spectroscopy. XRD analysis indicated that YAG:Er3+, Yb3+ nanobelts were cubic in structure with space group Ia3d. SEM analysis and histograms revealed that the width of YAG:Er3+, Yb3+ nanobelts was ca. 1.8 ± 0.37 μm under the 95 % confidence level, and the thickness was ca. 81.8 nm. Up-conversion emission spectra analysis manifested that YAG:Er3+, Yb3+ nanobelts respectively emitted strong green and red emissions centering at 522, 554 and 648 nm under the excitation of a 980-nm diode laser. The green emissions were assigned to the energy levels transitions of $ ^{ 2} {\text{H}}_{ 1 1/ 2} ,^{ 4} {\text{S}}_{ 3/ 2} \to^{ 4} {\text{I}}_{ 1 5/ 2} $ of Er3+ ions, and the red emission originated from the energy levels transition of $ ^{ 4} {\text{F}}_{ 9/ 2} \to ^{ 4} {\text{I}}_{{{\text{l5}}/ 2}} $ of Er3+ ions. The up-conversion luminescence of YAG:Er3+, Yb3+ nanobelts doped with various concentrations of Yb3+ and Er3+ was studied and the optimum molar ratio of Yb3+ to Er3+ was found to be 15:1. CIE analysis demonstrated that color-tuned luminescence can be obtained by adjusting doping concentrations of Yb3+ and Er3+ ions, which could be applied in the fields of optical telecommunication and optoelectronic devices. The up-conversion luminescent mechanism and the formation mechanism of YAG:Er3+, Yb3+ nanobelts were also proposed.  相似文献   

7.
In order to investigate the partial electronic conduction in the high oxide ion conductor of the system Bi2O3-Y2O3 under low oxygen pressure, e.m.f. and polarization methods were employed. Although the electrolyte was decomposed when the \(P_{{\text{O}}_{\text{2}} }\) was lower than the equilibrium \(P_{{\text{O}}_{\text{2}} }\) of Bi, Bi2O3 mixture at each temperature, the ionic transport number was found to be close to unity above that \(P_{{\text{O}}_{\text{2}} }\) . The hole conductivity (σ p) and the electron conductivity (σ p) could be expressed as follows, $$\begin{gathered} \sigma _p \Omega cm = 5 \cdot 0 \times 10^2 \left( {P_{O_2 } atm^{ - 1} } \right)^{{1 \mathord{\left/ {\vphantom {1 4}} \right. \kern-\nulldelimiterspace} 4}} \exp \left[ { - 106 kJ\left( {RT mol} \right)^{ - 1} } \right] \hfill \\ \sigma _p \Omega cm = 3 \cdot 4 \times 10^5 \left( {P_{O_2 } atm^{ - 1} } \right)^{ - {1 \mathord{\left/ {\vphantom {1 4}} \right. \kern-\nulldelimiterspace} 4}} \exp \left[ { - 213 kJ\left( {RT mol} \right)^{ - 1} } \right] \hfill \\ \end{gathered} $$ These values were much lower than the oxide ion conductivity under ordinary oxygen pressure.  相似文献   

8.
A complex with the formula [CuL(H2O)2]{[CuL][Fe(CN)6]}2·2H2O, where L=3,10-bis(2-hydroxyethyl)-1,3,5,8,10,12-hexaazacyclotetradecane, has been synthesized and crystallographically characterized. The structure is composed of a one-dimensional zigzag chain of units, and [CuL(H2O)2]2+ units. The one-dimensional zigzag chain extents through linkages. The adjacent two polymer chains are linked by the hydrogen bonding between [CuL(H2O)2]2+ and [Fe(CN)6]3–, forming a 3D supramolecular structure with inner hydrophilic channels. Magnetic susceptibility measurements show no exchange interaction between the Cu(II) and Fe(III) ions due to the longer (axial) bond length.  相似文献   

9.
A new type analog memory cell with variable output voltage has been proposed and its performance examined. The cell construction is $$\begin{gathered} {\text{Ag|RbAg}}_{\text{4}} {\text{I}}_{\text{5}} {\text{|(Ag}}_{\text{2}} {\text{Se)}}_{{\text{0}} \cdot {\text{925}}} {\text{(Ag}}_{\text{3}} {\text{PO}}_{\text{4}} {\text{)}}_{{\text{0}} \cdot {\text{075}}} {\text{|RbAg}}_{\text{4}} {\text{I}}_{\text{5}} {\text{|Ag}} \hfill \\ {\text{ }} \uparrow \hfill \\ {\text{ Pt}} \hfill \\ \end{gathered} $$ in which (Ag2Se)0.925(Ag3PO4)0.075 is a mixed conductor exhibiting high ionic and electronic conductivity at room temperature. The potential difference between the silver electrode and the platinum electrode depends on the silver activity in the mixed conductor, and it is changed by passing the current between one silver electrode and the platinum electrode. The output voltage of the cell is changed in the range of 150 to 0 mV. At open circuit, the memorized cell voltage decreased by only 1% over several hours.  相似文献   

10.
Metal oxide nanoparticles are the subject of current interest because of their unusual optical, electronic, and magnetic properties. In this work, cobalt zinc ferrite ( $ {\text{Co}}_{0.3} {\text{Zn}}_{0.7} {\text{Fe}}_{2} {\text{O}}_{4} $ ) nanoparticles have been synthesized successfully through redox chemical reaction in aqueous solution. The synthesized $ {\text{Co}}_{0.3} {\text{Zn}}_{0.7} {\text{Fe}}_{2} {\text{O}}_{4} $ nanoparticles have been used for the preparation of homogenous polyvinyl acetate-based nanocomposite ( $ {\text{Co}}_{0.3} {\text{Zn}}_{0.7} {\text{Fe}}_{2} {\text{O}}_{4} /{\text{PVAc}} $ ) via in situ emulsion polymerization method. Structural, morphological and magnetic properties of the products were determined and characterized in detail by X-ray powder diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The XRD patterns of the $ {\text{Co}}_{0.3} {\text{Zn}}_{0.7} {\text{Fe}}_{2} {\text{O}}_{4} $ confirmed that the formed nanoparticles are single crystalline. According to TEM micrographs, the synthesized $ {\text{Co}}_{0.3} {\text{Zn}}_{0.7} {\text{Fe}}_{2} {\text{O}}_{4} $ nanoparticles had nano-needle morphology with an average particle size of 20 nm. The calculated coefficient of variation (CV) of nanoparticles diameters obtained by TEM micrographs was 16.77. The $ {\text{Co}}_{0.3} {\text{Zn}}_{0.7} {\text{Fe}}_{2} {\text{O}}_{4} $ nanoparticles were dispersed almost uniformly in the polymer matrix as was proved by SEM technique. The magnetic parameters of the samples, such as saturation magnetization (M s) and coercivity (H c) were measured, as well. Magnetization measurements indicated that the saturation magnetization of synthesized $ {\text{Co}}_{0.3} {\text{Zn}}_{0.7} {\text{Fe}}_{2} {\text{O}}_{4} /{\text{PVAc}} $ nanocomposites was markedly less than that of $ {\text{Co}}_{0.3} {\text{Zn}}_{0.7} {\text{Fe}}_{2} {\text{O}}_{4} $ magnetic nanoparticles. However, the nanocompoites exhibited super-paramagnetic behavior at room temperature under an applied magnetic field.  相似文献   

11.
A ${\text{Pd/}}\gamma {\text{ - Al}}_{\text{2}} {\text{O}}_{\text{3}}$ membrane supported on a macroporous $\alpha {\text{ - Al}}_{\text{2}} {\text{O}}_{\text{3}}$ tube was prepared by sol–gel processing and used in the partial hydrogenation of acetylene and 1,3-butadiene. The average pore diameter of the ${\text{Pd/}}\gamma {\text{ - Al}}_{\text{2}} {\text{O}}_{\text{3}}$ membrane was 3.6 nm. The gases were separated by Knudsen diffusion. The activity and selectivity of the ${\text{Pd/}}\gamma {\text{ - Al}}_{\text{2}} {\text{O}}_{\text{3}}$ membrane was compared to that of ${\text{Pd/}}\gamma {\text{ - Al}}_{\text{2}} {\text{O}}_{\text{3}}$ catalysts used in a conventional packed bed reactor. The highest selectivity to the partially hydrogenated products occurred when the reactant was premixed with H2 and was passed through the membrane wall.  相似文献   

12.
Summary The isobutylene polymerizations in the presence of BCl3 were carried out in dichloromethane ([M]=7 mol/l) at-20°C in the presence and absence of PVC. The products of polymerizations in the absence of PVC are oligoisobutylenes with a narrow molecular weight distribution ; their structure was analyzed by 1H-NMR spectroscopy. In addition to the signals assigned to known unsaturated terminal structures [ 4.62 and 4.82-CH2C(CH3)=CH2, 5.12-CH=C(CH3)2], a new intense signal was found at 5.09 ppm and assigned to the structure-CH=C(CH3)CH2CH3. A mixture of isobutylene homopolymers and PVC grafted with isobutylene (approx. 9.5% wt. isobutylene grafted) is formed in the presence of PVC.  相似文献   

13.
Two new organic–inorganic hybrid compounds [\textCu\textI ( \texten ) 2 ( \textH 2 \textO )] 2 { ( \textSiW\textVI 1 1 \textW\textV 1\textO 40 ) 2 [ \textCu\textII ( \texten ) 2 ( \textH 2 \textO )] 2 [\textCu\textII ( \texten ) 2 ] 2 }·6 \textH 2 \textO [{\text{Cu}}^{\text{I}} \left( {\text{en}} \right)_{ 2} \left( {{\text{H}}_{ 2} {\text{O}}} \right)]_{ 2} \left\{ {\left( {{\text{SiW}}^{\text{VI}}_{ 1 1} {\text{W}}^{\text{V}}_{ 1}{\text{O}}_{ 40} } \right)_{ 2} \left[ {{\text{Cu}}^{\text{II}} \left( {\text{en}} \right)_{ 2} \left( {{\text{H}}_{ 2} {\text{O}}} \right)\left] {_{ 2} } \right[{\text{Cu}}^{\text{II}} \left( {\text{en}} \right)_{ 2} } \right]_{ 2} } \right\}{\cdot}6 {\text{H}}_{ 2} {\text{O}} (1) and (H2 L)2[SiW12O40]·H2O (2) [en = ethylenediamine, L = 1,4-bis(3-pyridinecarboxamido)benzene], have been hydrothermally synthesized and characterized by IR, elemental analyses, TG analysis, and single-crystal X-ray diffraction. Structural analyses indicate that compound 1 exhibits an interesting three-dimensional(3D) cross-like supramolecular network through arrangement of a 1D organic–inorganic hybrid chain { ( \textSiW\textVI 1 1 \textW\textV 1 \textO 40 ) 2 [ \textCu\textII ( \texten ) 2 ( \textH 2 \textO )] 2 [\textCu\textII ( \texten ) 2 ] 2 } 2- . \left\{ {\left( {{\text{SiW}}^{\text{VI}}_{ 1 1} {\text{W}}^{\text{V}}_{ 1} {\text{O}}_{ 40} } \right)_{ 2} \left[ {{\text{Cu}}^{\text{II}} \left( {\text{en}} \right)_{ 2} \left( {{\text{H}}_{ 2} {\text{O}}} \right)\left] {_{ 2} } \right[{\text{Cu}}^{\text{II}} \left( {\text{en}} \right)_{ 2} } \right]_{ 2} } \right\}^{ 2- } . The compound 2 consists of protonated L ligand and [SiW12O40]4− anion. The protonated L ligands have been extended into a 2D network via hydrogen-bonding interactions. The guest [SiW12O40]4− clusters have been incorporated into the square voids of the 2D host network as templates. The electrochemical behavior and electrocatalysis of compound 2 bulk-modified carbon paste electrode (2-CPE) have been studied.  相似文献   

14.
The micellization behavior of bile salts—sodium cholate and sodium deoxycholate was studied in aqueous methanol, ethanol and ethylene glycol mixtures (10–20 % v/v) over a temperature range (300–320 K) by surface tension and conductivity methods. Critical micelle concentration, extent of counter ion binding (α), interfacial property (A min, ζmax, π-CMC, $ \Updelta G_{\text{ad}}^{ \circ } $ ) and thermodynamic parameters ( $ \Updelta G_{\text{m}}^{ \circ } $ , $ \Updelta H_{\text{m}}^{ \circ } $ , $ \Updelta S_{\text{m}}^{ \circ } $ ) for the micellization process are reported and discussed.  相似文献   

15.
An adiabatic calorimeter was used to measure the thermodynamics of the silver zinc cell. The charge and discharge reactions were shown to take place in two stages involving the production of argentous oxide and argentic oxide respectively. No thermal evidence was found to suggest the existence of a higher oxide of silver. The cell reactions were (1) $$2{\text{Ag + ZnO}} \leftrightharpoons {\text{Ag}}_{\text{2}} {\text{O + Zn, }}\Delta {\text{H = 158}} \cdot {\text{7 kJF}}^{ - {\text{1}}}$$ (2) $${\text{Ag}}_{\text{2}} {\text{O + ZnO}} \leftrightharpoons {\text{Ag}}_{\text{2}} {\text{O}}_{\text{2}} {\text{ + Zn, }}\Delta {\text{H = 176}} \cdot 1{\text{ kJF}}^{ - {\text{1}}}$$ If the cell was left on open circuit for a long period, or the positive electrodes heated, reaction (2) was suppressed and the discharge took place via reaction (1), without any reduction in capacity.  相似文献   

16.
Polyacetylene films, contacted with platinum mesh, have been polarized anodically in aqueous H2SO4, HClO4, HBF4 and H2F2 of medium concentrations (30–70 wt%). Two oxidation peaks are observed, the equivalents of which are 1 $${\text{(1) 0}}{\text{.045 F mol}}^{ - {\text{1}}} {\text{ CH (2) 0}}{\text{.23 F mol}}^{ - {\text{1}}} {\text{ CH}}$$ The potential of the Process 1 decreases linearly with increasing acid concentration by 20–40 mV mol?1 dm?3, while the potential of Peak 2 exhibits normal Nernst behaviour (about + 60 mV decade?1. Process 1 is partially reversible, while Process 2 is totally irreversible. From these findings for Process 1 we conclude the reversible insertion of anions into the polyacetylene host lattice, which is primarily oxidized to the polyradical cation, with the co-insertion of acid molecules HA to yield the insertion compound [(CH)+·yA?·vyHA] x y?4.5% andv=1.5 for H2SO4 and HClO4. In the course of Process 2, the polymer is irreversibly oxidized according to $$( - ^ \cdot {\text{CH}} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot ^ \oplus {\text{ CH}} - )_{x/2} + 2{\text{H}}_{\text{2}} {\text{O}} \to ( - \mathop {\text{C}}\limits_{\mathop \parallel \limits_{\text{O}} } \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \mathop {\text{C}}\limits_{\mathop \parallel \limits_{\text{O}} } - )_{x/2} + 6{\text{H}}^{\text{ + }} + 5e^ - $$ As this process occurs to some extent even in the potential region of Process 1, a continuous degradation of the host lattice occurs upon cycling.  相似文献   

17.
The reaction of K3[Cu(CN)4], Me3SnCl and 4-methylpyrimidine (mpym) at room temperature affords the 3D-octameric 3 [Cu8(CN)8(mpym)4], I, in water/acetonitrile and the 3D-host–guest 3 [Cu8(CN)8(mpym)4 dioxane], II. The X-ray single crystal diffraction of I reveals the formation of homometallic octameric building blocks consisting of three fused 11 membered rings. The 3D-network structure of the supramolecular coordination polymer (SCP), I, consists of two crossing sets of parallel corrugated interpenetrating CuCN chains, which are connected by mpym, hydrogen bonds, π–π stacking and cuprophilic interactions. Species II is isostructural with I as indicated by X-ray powder diffraction and spectroscopic measurements.  相似文献   

18.
The reactions of K3[Cu(CN)4], R3SnCl and bipodal ligands, where R = (n-Bu)3SnCl and L = quinoxaline (qox) and R = Me3SnCl and L = quinazoline (qaz) afford the red needle crystals of 3 [ \textCu2 ( \textCN )2 m\text-(qox) ]2 {}_{\infty }^{3} \left[ {{\text{Cu}}_{2} \left( {\text{CN}} \right)_{2} \mu {\text{-(qox)}}} \right]_{2} , 1 and the orange needle crystals of [Cu2(CN)2μ(qaz)]n, 2. 1 was subjected to single crystals X-ray study while 2 was investigated by IR, 1H NMR and mass spectra as well as TGA. The crystal structure of 1 exhibits puckered CuCN chains connected by qox molecules forming 2D-sheets. The 2D-sheets contain hexagonal nets stacked in A···A···A fashion. The paralleled sheets are close packed via extensive H-bonds, π–π stacking, strong Cu-Cu interaction and short Cu–C contacts which develop 3D-network. Unique rhombic [Cu23-CN)2] motifs result as consequence of interwoven of the 2D-sheets. The structure of 2 exhibits different XRPD pattern than that of 1 although, the two structures have the same Cu:CN:L stoichiometric ratio. The emission spectra of 1 and 2 display bands around 390, 420 and 475 nm corresponding to MC transition, 1(n,π*) → So and MLCT, respectively. Thus, 1 and 2 can be considered as examples of room-temperature luminescent Cu-containing polymers which can be used in applications as molecular sensing systems. Also, the oxidative degradation of Metanil Yellow (MY) dye has been investigated by hydrogen peroxide catalyzed by 1 or 2. The catalytic activity of 1 is more pronounced than that of 2.  相似文献   

19.
Methyl-4-[bis(4-bromophenyl)amino]benzoate cation radical salts having non-nucleophilic anions such as $ {\text{SbF}}^{ - }_{6} $ , $ {\text{PF}}^{ - }_{6} $ and $ {\text{AsF}}^{ - }_{6} $ were newly prepared and found to be very active initiators for the polymerization of cyclohexene oxide at room temperature, in dichloromethane without any external stimulation. The effects of counter ion structure, salt and monomer concentration on the polymerization yield and molecular weight, and the mechanism of initiation are presented.  相似文献   

20.
A homologous series of new surface-active 1,1-bis{[3-(N,N-dimethylamino)ethyl]-amido}alkane-di-N-oxides were synthesized in the reaction of an appropriate diethyl 2-alkylmalonate with N,N-dimethylethylenediamine followed by oxidation with an aqueous solution of hydrogen peroxide. The adsorption isotherms of their aqueous solutions were measured and evaluated to obtain adsorption parameters: critical micelle concentration (CMC), surface excess concentration (ΓCMC), equilibrium surface tension at the CMC (γ CMC), cross-sectional area of the adsorbed surfactant molecule (A CMC), standard free energies of adsorption and micellization
Anna Krasowska (Corresponding author)Email:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号