The development of rechargeable lithium-ion batteries (LIBs) is being driven by the ever-increasing demand for high energy density and excellent rate performance. Charge transfer kinetics and polarization theory, considered as basic principles for charge regulation in the LIBs, indicate that the rapid transfer of both electrons and ions is vital to the electrochemical reaction process. Graphene, a promising candidate for charge regulation in high-performance LIBs, has received extensive investigations due to its excellent carrier mobility, large specific surface area and structure tunability, etc. Recent progresses on the structural design and interfacial modification of graphene to regulate the charge transport in LIBs have been summarized. Besides, the structure-performance relationships between the structure of the graphene and its dedicated applications for LIBs have also been clarified in detail. Taking graphene as a typical example to explore the mechanism of charge regulation will outline ways to further understand and improve carbon-based nanomaterials towards the next generation of electrochemical energy storage devices.
Nanostructured organic tetralithium salts of 2,5-dihydroxyterephthalic acid (Li4C8H2O6) supported on graphene were prepared via a facile recrystallization method. The optimized composite with 75 wt.% Li4C8H2O6 was evaluated as an anode with redox couples of Li4C8H2O6/Li6C8H2O6 and as a cathode with redox couples of Li4C8H2O6/Li2C8H2O6 for Li-ion batteries, exhibiting a high-rate capability (10 C) and long cycling life (1,000 cycles). Moreover, in an all-organic symmetric Li-ion battery, this dual-function electrode retained capacities of 191 and 121 mA·h·g–1 after 100 and 500 cycles, respectively. Density functional theory calculations indicated the presence of covalent bonds between Li4C8H2O6 and graphene, which affected both the morphology and electronic structure of the composite. The special nanostructures, high electronic conductivity of graphene, and covalent-bond interaction between Li4C8H2O6 and graphene contributed to the superior electrochemical properties. Our results indicate that the combination of organic salt molecules with graphene is useful for obtaining high-performance organic batteries.
The overall performance of lithium-ion batteries (LIBs) is closely related to the interphase between the electrode materials and electrolytes. During LIB operation, electrolytes may decompose on the surface of electrode materials, forming a solid electrolyte interphase (SEI) layer. Ideally, the SEI layer should ensure reversible lithium-ion intercalation in the electrodes and suppress interfacial interactions. However, the chemical and mechanical stabilities of the SEI layer are not usually able to meet these requirements. Alternatively, tremendous efforts have been devoted to engineering the surface of electrode materials with an artificial interphase, which shows great promise in improving the electrochemical performance. Herein, we present a comprehensive summary of the state-of-the-art knowledge on this topic. The effects of the artificial interphase on the electrochemical performance of the electrode materials are discussed in detail. In particular, we highlight the importance of three functions of artificial interphases, including inhibiting electrolyte decomposition, protecting the electrodes from corrosion, and accommodating electrode volume changes.
In this study, amorphous TiNi phase was successfully prepared using mechanically milling for a very short time of 8 h. HRTEM confirms the formation of amorphous phase with the presence of nanocrystalline Fe particles. After hydrogenation (30 bars of H2 for a duration of 2 h), the electrochemical reaction shows that TiNi hydride/Li cell discharges at a current of one Li for 10 h between 3 V and 0.005 V. The discharge of TiNiH electrode around x = 1 Li corresponds to a capacity of 251 mAh g−1 and a hydride composition of TiNiH1.0 at an average voltage of 0.4 V. Ex-situ X-ray diffraction pattern collected at the end of the discharge shows a mixture of amorphous TiNi compound and LiH. A general mechanism for the electrochemical reaction is then proposed: α-TiNiH + Li+ + e− → α-TiNi + LiH. The results from DFT calculations yield an average cell voltage of 0.396 V, which is in good agreement with the experimental pseudo-plateau occurring at 0.4 V. 相似文献
Nanocrystalline SnF2 was prepared via recrystallization of commercially available tin (II) fluoride. The electrochemical performance of tin fluoride as anode material for Li-ion batteries was investigated. The cyclic voltammetry of the obtained material showed occurrence of SnF2 decomposition at first and a typical reversible alloying/de-alloying process at low potentials. Furthermore, it was found that the synthesized material delivered a high reversible capacity of 1016 mAh g− 1 and a capacity retention of 54.8% after 30 cycles when the electrode was cycled at a current of 100 mA g− 1. 相似文献
A convenient hydrothermal synthetic route has been successfully developed to prepare stable rock-salt-type structure α-MnS submicrocrystals under mild conditions. In this synthetic system, hydrated manganese chloride (MnCl4·4H2O) was used to supply a highly reactive manganese source, thiourea ((NH2)2CS) was used to supply the sulfide source and aqueous hydrazine (N2H4·H2O) was used as both alkaline and reducing agent. The results revealed that the electrochemical performance of the α-MnS submicrocrystals may be associated with the degree of crystallinity and particle size of samples. The initial lithiation capacity of the α-MnS submicrocrystals obtained at 120 °C is 1327 mAh g−1 at 0.7 V versus Li/Li+, which exhibited α-MnS submicrocrystals is extremely promising anode material for lithium-ion batteries and has great potential applications in the future. 相似文献
A novel microwave method is described for the preparation of electrode materials required for lithium batteries. The method is simple, fast and carried out in most cases with the same starting material as in conventional methods. Good crystallinity has been noted and lower temperatures of reaction has been inferred in cases where low temperature products have been identified 相似文献
The synthesis of a composite of cobalt phosphide nanowires and reduced graphene oxide (denoted CoP/RGO) via a facile hydrothermal method combined with a subsequent annealing step is reported. The resulting composite presents large specific surface area and enhanced conductivity, which can effectively facilitate charge transport and accommodates variations in volume during the lithiation/de-lithiation processes. As a result, the CoP/RGO nanocomposite manifests a high reversible specific capacity of 960 mA·h·g–1 over 200 cycles at a current density of 0.2 A·g–1 (297 mA·h·g–1 over 10,000 cycles at a current density of 20 A·g–1) and excellent rate capability (424 mA·h·g–1 at a current density of 10 A·g–1).